首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   16篇
  2021年   5篇
  2019年   1篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   5篇
  2013年   8篇
  2012年   11篇
  2011年   6篇
  2010年   10篇
  2009年   10篇
  2008年   8篇
  2007年   10篇
  2006年   11篇
  2005年   8篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  2000年   5篇
  1999年   6篇
  1998年   1篇
  1997年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1984年   1篇
  1979年   2篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
101.
The cell wall of the green alga Micrasterias denticulata Bréb. ex Ralfs (Desmidiaceae, Zygnematophyceae, Streptophyta) was investigated to obtain information on the composition of component polysaccharides and proteoglycans to allow comparison with higher plants and to understand cell wall functions during development. Various epitopes currently assigned to arabinogalactan‐proteins (AGPs) of higher plants could be detected in Micrasterias by immuno TEM and immunofluorescence methods, but the walls did not bind the β‐d ‐glycosyl‐Yariv (β‐GlcY) reagent. Secretory vesicles and the primary wall were labeled by antibodies against AGPs (JIM8, JIM13, JIM14). Dot and Western blot experiments indicated a proteoglycan nature of the epitopes recognized, which consisted of galactose and xylose as major sugars by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC‐PAD). Epitopes of alkali‐soluble polysaccharides assigned to noncellulosic polysaccharides in higher plants could be detected and located in the wall during its formation. The polyclonal anti‐xyloglucan (anti‐XG) antibody labeled primary and secondary wall of Micrasterias, whereas the monoclonal antibody CCRC‐M1, directed against the fucose/galactose side chain of xyloglucan (XyG), did not recognize any structures. Labeling by anti‐XG antibody at the trans‐sites of the dictyosomes and at wall material containing vesicles indicated that secretion of the epitopes occurred similar to higher plants. The presence of (1→3, 1→4)‐β‐glucan (mixed linked glucan) in the secondary cell wall but not in the primary cell wall of Micrasterias could be demonstrated by an antibody recognizing this glucan type, whereas (1→3)‐β‐glucan (callose) could not be detected. The analytical results revealed that alkali‐soluble polysaccharides in the secondary wall of Micrasterias consist mostly of (1→3, 1→4)‐β‐d ‐glucan.  相似文献   
102.
Influenza virus‐like particles (VLPs) have been shown to induce a safe and potent immune response through both humoral and cellular responses. They represent promising novel influenza vaccines. Plant‐based biotechnology allows for the large‐scale production of VLPs of biopharmaceutical interest using different model organisms, including Nicotiana benthamiana plants. Through this platform, influenza VLPs bud from the plasma membrane and accumulate between the membrane and the plant cell wall. To design and optimize efficient production processes, a better understanding of the plant cell wall composition of infiltrated tobacco leaves is a major interest for the plant biotechnology industry. In this study, we have investigated the alteration of the biochemical composition of the cell walls of N. benthamiana leaves subjected to abiotic and biotic stresses induced by the Agrobacterium‐mediated transient transformation and the resulting high expression levels of influenza VLPs. Results show that abiotic stress due to vacuum infiltration without Agrobacterium did not induce any detectable modification of the leaf cell wall when compared to non infiltrated leaves. In contrast, various chemical changes of the leaf cell wall were observed post‐Agrobacterium infiltration. Indeed, Agrobacterium infection induced deposition of callose and lignin, modified the pectin methylesterification and increased both arabinosylation of RG‐I side chains and the expression of arabinogalactan proteins. Moreover, these modifications were slightly greater in plants expressing haemagglutinin‐based VLP than in plants infiltrated with the Agrobacterium strain containing only the p19 suppressor of silencing.  相似文献   
103.
Genetic linkage studies implicated deficiency of CD36, a membrane fatty acid (FA) transporter, in the hypertriglyceridemia and hyperinsulinemia of the spontaneously hypertensive rat (SHR). In this study we determined whether loss of CD36 function in FA uptake is a primary determinant of the SHR phenotype. In vivo, tissue distribution of iodinated, poorly oxidized beta-methyliodophenyl pentadecanoic acid (BMIPP) was examined 2 h after its intravenous injection. Fatty acid transport was also measured in vitro over 20 to 120 s in isolated adipocytes and cardiomyocytes obtained from SHR and from a congenic line (SHRchr4) that incorporates a piece of chromosome 4 containing wild-type CD36. SHR heart and adipose tissue exhibited defects in FA uptake and in conversion of diglycerides to triglycerides that are similar to those observed in the CD36 null mouse. However, a key difference in SHR tissues is that fatty acid oxidation is much more severely impaired than fatty acid esterification, which may underlie the 4-5-fold accumulation of free BMIPP measured in SHR muscle. Studies with isolated adipocytes and cardiomyocytes directly confirmed both the defect in FA transport and the fact that it is underestimated by BMIPP. Heart, oxidative muscle, and adipose tissue in the SHR exhibited a large increase in glucose uptake measured in vivo using [(18)F]fluorodeoxyglucose. Supplementation of the diet with short-chain fatty acids, which do not require CD36-facilitated transport, eliminated the increase in glucose uptake, the hyperinsulinemia, and the heart hypertrophy in the SHR. This indicated that lack of metabolic energy consequent to deficient FA uptake is the primary defect responsible for these abnormalities. Hypertension was not alleviated by the supplemented diet suggesting it is unrelated to fuel supply and any contribution of CD36 deficiency to this trait may be more complex to determine. It may be worth exploring whether short-chain FA supplementation can reverse some of the deleterious effects of CD36 deficiency in humans, which may include hypertrophic cardiomyopathy.  相似文献   
104.
Fibroblast growth factors (FGFs) constitute a large family of heparin-binding growth factors with diverse biological activities. FGF9 was originally described as glia-activating factor and is expressed in the nervous system as a potent mitogen for glia cells. Unlike most FGFs, FGF9 forms dimers in solution with a K(d) of 680 nm. To elucidate the molecular mechanism of FGF9 dimerization, the crystal structure of FGF9 was determined at 2.2 A resolution. FGF9 adopts a beta-trefoil fold similar to other FGFs. However, unlike other FGFs, the N- and C-terminal regions outside the beta-trefoil core in FGF9 are ordered and involved in the formation of a 2-fold crystallographic dimer. A significant surface area (>2000 A(2)) is buried in the dimer interface that occludes a major receptor binding site of FGF9. Thus, we propose an autoinhibitory mechanism for FGF9 that is dependent on sequences outside of the beta-trefoil core. Moreover, a model is presented providing a molecular basis for the preferential affinity of FGF9 toward FGFR3.  相似文献   
105.
 Four proteins were isolated from depectinised elementary fibres of flax (Linum usitatissimum L.), using either alkali or cellulase digestion treatments. All the four proteins were characterized by a deficiency or low contents of hydroxyproline and by high levels of glutamic acid/glutamine and/or aspartic acid/asparagine. The two proteoglycans solubilized with cellulase strongly reacted with β-glucosyl Yariv reagent but not with α-glucosyl Yariv reagent and contained appreciable amounts of alanine, glycine, serine and threonine, suggesting a relationship with cell wall hydroxyproline-deficient arabinogalactan-proteins. The two alkali-extracted proteins did not show any reaction with β-glucosyl Yariv dye. Due to the harsh treatment, they might only partially represent the original proteins. Due to its high level of glycine (41%), one of these proteins might be classified as a glycine-rich protein. The latter polypeptide, of low molecular molar mass, contained 14.6% leucine and might consist of a domain related to leucine-rich proteins. The data show that these proteins and arabinogalactan-protein-like proteoglycans were strongly associated with the secondary walls of flax fibres. Their presence in small amounts (0.1–0.4%), raises the problem of their putative structural role. Received: 22 October 1999 / Accepted: 17 January 2000  相似文献   
106.
Hemicellulose polymers were isolated from Argania spinosa leaf cell walls by sequential extractions with alkali. The structure of the two main polymers, xylan and xyloglucan, was investigated by enzyme degradation with specific endoglycosidases followed by analysis of the resulting fragments by high performance anion exchange chromatography (HPAEC) and matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS). The results show that A. spinosa xylan is composed of a beta-(1-->4)-linked-D-xylopyranose backbone substituted with 4-O-methyl-D-glucuronic acid residues. Xyloglucan oligosaccharide subunits were generated by treatment with an endo-(1-->4)-beta-D-glucanase of the xyloglucan-rich hemicellulosic fractions. MALDI-TOF mass spectra and HPAE-PAD chromatography of the pool of endoglucanase-generated xyloglucan oligomers indicated that A. spinosa cell wall contains a XXXG-type xyloglucan. In addition to XXXG, XXFG, XLXG/XXLG, XLFG fragments previously characterised in various plants, a second group of XXXG-type fragments was detected. The primary structure of the major subunit was determined by a combination of sugar analysis, methylation analysis, post-source decay (PSD) fragment analysis of MALDI-TOF MS and 1H NMR spectroscopy. This fragment, termed XUFG, contains a novel beta-D-Xylp-(1-->2)-alpha-D-Xylp side chain linked to C-6 of the second glucose unit from the nonreducing end of the cellotetraose sequence.  相似文献   
107.
FGF signaling plays a ubiquitous role in human biology as a regulator of embryonic development, homeostasis and regenerative processes. In addition, aberrant FGF signaling leads to diverse human pathologies including skeletal, olfactory, and metabolic disorders as well as cancer. FGFs execute their pleiotropic biological actions by binding, dimerizing and activating cell surface FGF receptors (FGFRs). Proper regulation of FGF-FGFR binding specificity is essential for the regulation of FGF signaling and is achieved through primary sequence variations among the 18 FGFs and seven FGFRs. The severity of human skeletal syndromes arising from mutations that violate FGF-FGFR specificity is a testament to the importance of maintaining precision in FGF-FGFR specificity. The discovery that heparin/heparan sulfate (HS) proteoglycans are required for FGF signaling led to numerous models for FGFR dimerization and heralded one of the most controversial issues in FGF signaling. Recent crystallographic analyses have led to two fundamentally different models for FGFR dimerization. These models differ in both the stoichiometry and minimal length of heparin required for dimerization, the quaternary arrangement of FGF, FGFR and heparin in the dimer, and in the mechanism of 1:1 FGF-FGFR recognition and specificity. In this review, we provide an overview of recent structural and biochemical studies used to differentiate between the two crystallographic models. Interestingly, the structural and biophysical analyses of naturally occurring pathogenic FGFR mutations have provided the most compelling and unbiased evidences for the correct mechanisms for FGF-FGFR dimerization and binding specificity. The structural analyses of different FGF-FGFR complexes have also shed light on the intricate mechanisms determining FGF-FGFR binding specificity and promiscuity and also provide a plausible explanation for the molecular basis of a large number craniosynostosis mutations.  相似文献   
108.
Summary Pectic polysaccharides are major components of the plant cell wall matrix and are known to perform many important functions for the plant. In the course of our studies on the putative role of pectic polysaccharides in the control of cell elongation, we have examined the distribution of polygalacturonans in the epidermal and cortical parenchyma cell walls of flax seedling hypocotyls. Pectic components have been detected with (1) the nickel (Ni2+) staining method to visualize polygalacturonates, (2) monoclonal antibodies specific to low (JIM5) and highly methylesterified (JIM7) pectins and (3) a combination of subtractive treatment and PATAg (periodic acid-thiocarbohydrazide-silver proteinate) staining. In parallel, calcium (Ca2+) distribution has been imaged using SIMS microscopy (secondary ion mass spectrometry) on cryo-prepared samples and TEM (transmission electron microscopy) after precipitation of calcium with potassium pyroantimonate. Our results show that, at the tissular level, polygalacturonans are mainly located in the epidermal cell walls, as revealed by the Ni2+ staining and immunofluorescence microscopy with JIM5 and JIM7 antibodies. In parallel, Ca2+ distribution points to a higher content of this cation in the epidermal walls compared to cortical parenchyma walls. At the ultrastructural level, immunogold labeling with JIM5 and JIM7 antibodies shows a differential distribution of pectic polysaccharides within cell walls of both tissues. The acidic polygalacturonans (recognized by JIM5) held through calcium bridges are mainly found in the outer part of the external wall of epidermal cells. In contrast, the labeling of methylesterified pectins with JIM7 is slightly higher in the inner part than in the outer part of the wall. In the cortical parenchyma cells, acidic pectins are restricted to the cell junctions and the wall areas in contact with the air-spaces, whereas methylesterified pectins are evenly distributed all over the wall. In addition, the pyroantimonate precipitation method reveals a clear difference in the Ca2+ distribution in the epidermal wall, suggesting that this cation is more tightly bound to acidic pectins in the outer part than in the inner part of that wall. Our findings show that the distribution of pectic polysaccharides and the nature of their linkages differ not only between tissues, but also within a single wall of a given cell in flax hypocotyls. The differential distribution of pectins and Ca2+ in the external epidermal wall suggests a specific control of the demethylation of pectins and a central role for Ca2+ in this regulation.Abbreviations Cdta diamino-1,2-cyclohexane tetra-acetic acid - PATAg periodic acid-thiocarbohydrazide-silver proteinate - PGA polygalacturonic acid - PME pectin methylesterase - RG I rhamnogalacturonan I - SIMS secondary ion mass spectrometry - TEM transmission electron microscopy  相似文献   
109.
The translocation mode of preprolactin (pPL) across mammalian endoplasmic reticulum was reinvestigated in light of recent findings that nascent secretory polypeptides synthesized in the presence of a highly reducing environment could be translocated posttranslationally and independently of their attachment to the ribosome (Maher, P. A., and S. J. Singer, 1986, Proc. Natl. Acad. Sci. USA, 83:9001-9005). The effects of the reducing agent dithiothreitol (DTT) on pPL synthesis and translocation were studied in this respect. The translocation of pPL was shown to take place only cotranslationally. The apparent posttranslational translocation was due to ongoing chain synthesis irrespective of the presence of high concentrations of DTT. When synthesis was completely blocked, no translocation was observed in the presence or absence of DTT. The synthesis of pPL was retarded by DTT, while its percent translocation was enhanced. The retardation in synthesis was reflected in reduced rates of initiation and elongation. As a consequence of this retardation, which increases the ratio of microsomes to nascent chains, and of possible effects on the conformation of nascent pPL and components of the translocation apparatus, DTT may expand the time and chain length windows for nascent chain translocation competence.  相似文献   
110.
A functional interaction between the signal sequence and the translation apparatus which may serve as a first step in chain targeting to the membrane is described. To this end, we exploited the powerful technique of molecular cloning in a procaryotic system and the well characterized translocation system of mammalian endoplasmic reticulum. The signal peptide of subunit B of the heat labile enterotoxin of Escherichia coli (EltB) was fused to several proteins. Single base substitutions were introduced in the signal peptide and their effect on protein synthesis and translocation was studied. We sought a single amino acid substitution which may define certain steps in the coordinated regulation of chain synthesis and targeting to the membrane. The substitution of proline for leucine at residue -8 in the signal peptide abolished all known functions of the signal peptide. In contrast to wild type signal peptide, the mutant signal peptide did not lead to arrest of nascent chain synthesis by signal recognition particle or translocation of the precursor protein across the membrane of the endoplasmic reticulum. Furthermore, the mutant signal peptide was not cleaved by purified E. coli signal peptidase. Interestingly, the mutation resulted in about a 2-fold increase in the rate of synthesis of the precursor protein, suggesting a role for the signal peptide in regulating the synthesis of the nascent secretory chain as a means of ensuring early and efficient targeting of this chain to the membrane. This role might involve interaction of the signal peptide with components of the translation apparatus and/or endogenous signal recognition particle. These results were obtained with three different fusion proteins carrying the signal peptide of EltB thus leading to the conclusion that the effect of the mutation on the structure and function of the signal peptide is independent of the succeeding sequence to which the signal peptide is attached.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号