首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   677篇
  免费   52篇
  国内免费   2篇
  2023年   12篇
  2022年   19篇
  2021年   30篇
  2020年   35篇
  2019年   68篇
  2018年   36篇
  2017年   28篇
  2016年   41篇
  2015年   40篇
  2014年   24篇
  2013年   73篇
  2012年   61篇
  2011年   42篇
  2010年   33篇
  2009年   26篇
  2008年   25篇
  2007年   22篇
  2006年   17篇
  2005年   14篇
  2004年   8篇
  2003年   6篇
  2002年   11篇
  2001年   8篇
  2000年   5篇
  1999年   3篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1967年   1篇
  1966年   2篇
  1965年   1篇
排序方式: 共有731条查询结果,搜索用时 15 毫秒
671.
Context: Ginsenoside Rb1 improves insulin sensitivity and glucose uptake in muscle cells via different signaling pathways; however, it is not clear that it has any effect on leptin signaling in skeletal muscle.

Objectives: The aim of this study was to investigate the effect of ginsenoside Rb1 on leptin receptors expression and main signaling pathways of leptin (STAT3, PI3 kinase and ERK kinase) in C2C12 skeletal muscle cells.

Materials and methods: C2C12 myotubes were incubated with various concentrations of Rb1 (0.1, 1 and 10?μM) for different incubation times (1–12?h). Leptin receptors expression and GLUT-4 translocation were analyzed using realtime PCR and western blot analyses, respectively. PI3 and ERK kinases were blocked using their specific inhibitors (wortmannin and PD98059) in the presence and absence of RB1 to determine the main signaling pathway related to leptin receptor activation in C2C12 cells.

Results: Rb1 could maximally stimulate both leptin receptors (OBRa and OBRb) mRNA and protein expression and phosphorylation of STAT3, PI3K and ERK2 in C2C12 myotubes at 10?μM for 3?h. Rb1 induced GLUT4 translocation was inhibited by the silencing of OBRb mRNA, demonstrated that glucose uptake was mediated via leptin receptor activation. GLUT4 recruitment to the cell surface induced by Rb1 was inhibited by wortmannin, an inhibitor of PI3K in combination with OBRb siRNA, but not by PD98059 an ERK2 kinase-1 inhibitor, indicating that GLUT4 translocation induced by Rb1 was associated with the leptin receptor upregulation and subsequent activation of PI3K.

Conclusions: Our results suggest that Rb1 promote translocation of GLUT4 by upregulation of leptin receptors and activation of PI3K.  相似文献   
672.
673.
Colorectal cancer is the third most common cancer in the world. Ubiquitin–proteasome system has shown to be activated in colorectal and other malignancies. UBE2Q1 is a novel human gene that encodes a putative E2 ubiquitin conjugating enzyme. Here, we investigated the expression pattern of UBE2Q1 gene in cell lines and tissues from human colorectal tumors. Quantitative (q) RT-PCR were employed to evaluate the expression levels of the mRNA for UBE2Q1 in colorectal cancer cell lines (HT29/219, LS180, SW742, Caco2, HTC116, SW48, SW480 and SW1116). Expression of UBE2Q1 at the protein levels were assessed by Western blotting in cell lines as well as in 43 human colorectal tumor tissues. All cell lines tested expressed UBE2Q1 gene at the level of both mRNA and protein, with the SW1116 line representing the lowest level of expression. The cell lines HT29/219 and SW742 showed the highest levels of UBE2Q1 protein and mRNA respectively. When compared to corresponding normal tissues, malignant parts of colorectal tumors showed increased levels of UBE2Q1 immunoreactivity in 32 (74.42 %) of cases. These data suggest that UBE2Q1 is differentially expressed in colorectal cell lines and shows overexpression in colorectal tumors.  相似文献   
674.
In this study we investigated the variations in soil seed banks along an altitudinal gradient in the Alborz mountains, Iran, covering three habitats from lower to upper altitudes: forest, forest-subalpine grassland ecotone and subalpine meadow. In each habitat from 1850 to 2400 m, 20 quadrats were established along four transects, and the above-ground vegetation and the germinable seed banks were determined. Results show that the similarity between seed bank and vegetation was lowest in the ecotone located at intermediate altitudes. Together with the contrasting highest density and species diversity of seeds at these altitudes, the ecotonal role of this habitat was confirmed.We found evidence that lower altitudes could act as storage for seeds of some species growing at higher altitudes; the role of the ecotone was more prominent as a reserve for the meadow plant seeds than the role of the forest as a reserve for seeds of the meadow and ecotone habitats. Soil seed banks, particularly from the ecotone, can be used for restoring vegetation in some degraded sites.  相似文献   
675.
Drug resistance in Candida species has been considerably increased in the last decades. Given the opposition to antifungal agents, toxicity and interactions of the antimicrobial drugs, identifying new antifungal agents seems essential. This study assessed the antifungal effects of nanoparticles (NPs) on the standard strains of Candida albicans and Candida glabrata and determined the expression genes, including ERG3, ERG11 and FKS1. Selenium nanoparticles (Se-NPs) were biosynthesized with a standard strain of C. albicans and approved by several methods including, ultraviolet-visible spectrophotometer, X-ray diffraction technique, Fourier-transform infrared analysis, field-emission scanning electron microscopy and EDX diagram. The antifungal susceptibility testing performed the minimum inhibitory concentrations (MICs) using the CLSI M27-A3 and M27-S4 broth microdilution method. The expression of the desired genes was examined by the real-time PCR assay between untreated and treated by antifungal drugs and Se-NPs. The MICs of itraconazole, amphotericin B and anidulafungin against C. albicans and C. glabrata were 64, 16 and 4 µg ml−1. In comparison, reduced the MIC values for samples treated with Se-NPs to 1 and 0·5 µg ml−1. The results obtained from real-time PCR and analysis of the ∆∆Cq values showed that the expression of ERG3, ERG11 and FKS1 genes was significantly down-regulated in Se-NPs concentrations (P < 0·05). This study's evidence implies biosafety Se-NPs have favourable effects on the reducing expression of ERG3, ERG11 and FKS1 antifungal resistance genes in C. albicans and C. glabrata.  相似文献   
676.
677.
678.
Saline stress is responsible for significant reductions in the growth of plants, and it globally leads to limitations in the performance of crops, especially in drought-affected areas. However, a better understanding of the mechanisms involved in the resistance of plants to environmental stress can lead to a better plant breeding and selection of cultivars. Mint is one of the most important medicinal plants, and it has important properties for industry, and for the medicinal and pharmacy fields. The effects of salinity on the biochemical and enzymatic properties of 18 ecotypes of mint from six different species, that is, Mentha piperita, Mentha mozafariani, Mentha rotundifolia, Mentha spicata, Mentha pulegium and Mentha longifolia, have been examined in this study. The experimental results showed that salinity increased with increasing in stress integrity influenced the enzymatic properties, proline content, electrolyte leakage, and the hydrogen peroxide, malondialdehyde, and essential oil contents. Cluster analysis and principal component analysis were conducted, and they grouped the studied species on the basis of their biochemical characteristics. According to the obtained biplot results, M. piperita and M. rotundifolia showed better stress tolerance than the other varieties, and M. longifolia was identified as being salt sensitive. Generally, the results showed that H2O2 and malondialdehyde had a positive connection with each other and showed a reverse relationship with all the enzymatic and non-enzymatic antioxidants. Finally, it was found that the M. spicata, M. rotundifolia and M. piperita ecotypes could be used for future breeding projects to improve the salinity tolerance of other ecotypes.  相似文献   
679.
Molecular Biology Reports - Prodiginines are bacterial red polypyrrole pigments and multifaceted secondary metabolites. These agents have anti-proliferative, immunosuppressive, antimicrobial, and...  相似文献   
680.
Rumen microbiota play a key role in the digestion and utilization of plant materials by the ruminant species, which have important implications for greenhouse gas emission. Yet, little is known about the key taxa and potential gene functions involved in the digestion process. Here, we performed a genome-centric analysis of rumen microbiota attached to six different lignocellulosic biomasses in rumen-fistulated cattle. Our metagenome sequencing provided novel genomic insights into functional potential of 523 uncultured bacteria and 15 mostly uncultured archaea in the rumen. The assembled genomes belonged mainly to Bacteroidota, Firmicutes, Verrucomicrobiota, and Fibrobacterota and were enriched for genes related to the degradation of lignocellulosic polymers and the fermentation of degraded products into short chain volatile fatty acids. We also found a shift from copiotrophic to oligotrophic taxa during the course of rumen fermentation, potentially important for the digestion of recalcitrant lignocellulosic substrates in the physiochemically complex and varying environment of the rumen. Differential colonization of forages (the incubated lignocellulosic materials) by rumen microbiota suggests that taxonomic and metabolic diversification is an evolutionary adaptation to diverse lignocellulosic substrates constituting a major component of the cattle’s diet. Our data also provide novel insights into the key role of unique microbial diversity and associated gene functions in the degradation of recalcitrant lignocellulosic materials in the rumen.Subject terms: Bacterial genetics, Metagenomics  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号