Herein, an ultrasensitive electrochemical aptasensor for quantitative detection of bisphenol A (BPA) was fabricated based on a novel signal amplification strategy. This aptasensor was developed by electrodeposition of gold-platinum nanoparticles (Au-PtNPs) on glassy carbon (GC) electrode modified with acid-oxidized carbon nanotubes (CNTs-COOH). In this protocol, acriflavine (ACF) was covalently immobilized at the surface of glassy carbon electrode modified with Au-PtNPs/CNTs-COOH nanocomposite. Attachment of BPA-aptamer at the surface of modified electrode was performed through the formation of phosphoramidate bonds between the amino group of ACF and phosphate group of the aptamer at 5′end. By interaction of BPA with the aptamer, the conformational of aptamer was changed which lead to retarding the interfacial electron transfer of ACF as a probe. Sensitive quantitative detection of BPA was carried out by monitoring the decrease of differential pulse voltammetric (DPV) responses of ACF peak current with increasing the BPA concentration. The resultant aptasensor exhibited good specificity, stability and reproducibility, indicating that the present strategy was promising for broad potential application. 相似文献
A three-dimensional polymeric KITlI heterometallic compound [K2Tl(μ-C4H4O4)(μ-NO3)]n, with mixes succinate and nitrate ligands, has been synthesized and characterized. Its single-crystal X-ray structure shows two types of K+-ions with coordination numbers of seven and eight and one Tl+-ion with a coordination number of five. However, the arrangement of O-atoms for TlI suggests a gap or hole in the coordination geometry around this atom. This ‘hole’ is possibly occupied by a stereochemically ‘active’ electron lone pair of thallium atoms. Two hydrogen atoms of succinate situated 3.26 Å above the proposed site on the lone pair of TlI is oriented in such a way that it might be thought to be forming weak Tl-Lp?H-C hydrogen bond or agostic interactions, thus attaining of environment TlO5H2. 相似文献
This study describes morphology and fine structure of the Persian sturgeon (Acipenser persicus) (Acipenseridae, Chondrostei) spermatozoon. The results show that the spermatozoon of A. persicus is differentiated into an elongated head (length: mean±SD: 7.1±0.5μm) with an acrosome (length: 1.2±0.2μm), a cylindrical midpiece (length: 1.8±0.5μm), a flagellum (length: 50.3±5.9μm) and a total length of 59.2±6.2μm. Ten posterolateral projections (PLPs) arise from the posterior edge of the acrosome and there were 3 endonuclear canals that traversed the nucleus from the acrosomal end to the basal nuclear fossa region. Three to six mitochondria were in peripheral midpiece and the proximal and distal centrioles were located near to "implantation fossa" and basement of the flagellum. The axoneme has a typical eukaryotic structure composed of 9 peripheral microtubules and a central pair of single microtubule surrounded by the plasma membrane. Lateral fins were observed along the flagellum. The fins started and ended at 0.5-1μm from midpiece and at 4-6μm from the end of flagellum. There were significant differences in the size of almost all measured morphological parameters between males and flagellar, midpiece and nucleus characters were more isolated parameters that can be considered for detecting inter-individual variations. This study showed that sperm morphology and fine structure are similar among sturgeon species, but the dimensions of the parameters may differ. 相似文献
In prion diseases, the mammalian prion protein PrP is converted from a monomeric, mainly alpha-helical state into beta-rich amyloid fibrils. To examine the structure of the misfolded state, amyloid fibrils were grown from a beta form of recombinant mouse PrP (residues 91-231). The beta-PrP precursors assembled slowly into amyloid fibrils with an overall helical twist. The fibrils exhibit immunological reactivity similar to that of ex vivo PrP Sc. Using electron microscopy and image processing, we obtained three-dimensional density maps of two forms of PrP fibrils with slightly different twists. They reveal two intertwined protofilaments with a subunit repeat of approximately 60 A. The repeating unit along each protofilament can be accounted for by elongated oligomers of PrP, suggesting a hierarchical assembly mechanism for the fibrils. The structure reveals flexible crossbridges between the two protofilaments, and subunit contacts along the protofilaments that are likely to reflect specific features of the PrP sequence, in addition to the generic, cross-beta amyloid fold. 相似文献
Measles virus (MV) causes small and large outbreaks in Iran. Molecular assays allow identifying and the sources of measles imported from neighboring countries. We carried out a phylogenetic analysis of measles virus circulating in Iran over the period 2010–2012. Specimens from suspected cases of measles were collected from different regions of Iran. Virus isolation was performed on urine and throat swabs. Partial nucleoprotein gene segments of MV were amplified by RT-PCR. PCR products of 173 samples were sequenced and analyzed. The median age of confirmed cases was 2 years. Among all confirmed cases, 32% had unknown vaccination status, 20% had been vaccinated, and 48% had not been vaccinated. Genotypes B3 and D8 (for the first time), H1 and D4 were detected mainly in unvaccinated toddlers and young children. Genotype B3 became predominant in 2012 and was closely related to African strains. H1 strains were also found in small and large outbreaks during 2012 but were not identical to Iranian H1-2009 strains. A majority of the Iranian D4 strains during 2010–2012 outbreaks were linked to the D4 strain identified in the Pakistan in 2007. We identified a single case in 2010 belonging to D8 genotype with 99.7% identity to Indian isolates. Although the vaccination program is currently good enough to prevent nationwide epidemics and successfully decreased measles incidence in Iran, the fraction of protected individuals in the population was not high enough to prevent continuous introduction of cases from abroad. Due to increasing number of susceptible individuals in some areas, sustained transmission of the newly introduced viral genotype remains possible. 相似文献
The most basic and significant issue in complex network analysis is community detection, which is a branch of machine learning. Most current community detection approaches, only consider a network's topology structures, which lose the potential to use node attribute information. In attributed networks, both topological structure and node attributed are important features for community detection. In recent years, the spectral clustering algorithm has received much interest as one of the best performing algorithms in the subcategory of dimensionality reduction. This algorithm applies the eigenvalues of the affinity matrix to map data to low-dimensional space. In the present paper, a new version of the spectral cluster, named Attributed Spectral Clustering (ASC), is applied for attributed graphs that the identified communities have structural cohesiveness and attribute homogeneity. Since the performance of spectral clustering heavily depends on the goodness of the affinity matrix, the ASC algorithm will use the Topological and Attribute Random Walk Affinity Matrix (TARWAM) as a new affinity matrix to calculate the similarity between nodes. TARWAM utilizes the biased random walk to integrate network topology and attribute information. It can improve the similarity degree among the pairs of nodes in the same density region of the attributed network, without the need for parameter tuning. The proposed approach has been compared to other primary and new attributed graph clustering algorithms based on synthetic and real datasets. The experimental results show that the proposed approach is more effective and accurate compared to other state-of-the-art attributed graph clustering techniques.
Neuropilin-1 (NP-1) is a receptor for vascular endothelial growth factor-A165 (VEGF-A165) in endothelial cells. To define the role of NP-1 in the biological functions of VEGF, we developed a specific peptide antagonist of VEGF binding to NP-1 based on the NP-1 binding site located in the exon 7- and 8-encoded VEGF-A165 domain. The bicyclic peptide, EG3287, potently (K(i) 1.2 microM) and effectively (>95% inhibition at 100 microM) inhibited VEGF-A165 binding to porcine aortic endothelial cells expressing NP-1 (PAE/NP-1) and breast carcinoma cells expressing only NP-1 receptors for VEGF-A, but had no effect on binding to PAE/KDR or PAE/Flt-1. Molecular dynamics calculations, a nuclear magnetic resonance structure of EG3287, and determination of stability in media, indicated that it constitutes a stable subdomain very similar to the corresponding region of native VEGF-A165. The C terminus encoded by exon 8 and the three-dimensional structure were both critical for EG3287 inhibition of NP-1 binding, whereas modifications at the N terminus had little effect. Although EG3287 had no direct effect on VEGF-A165 binding to KDR receptors, it inhibited cross-linking of VEGF-A165 to KDR in human umbilical vein endothelial cells co-expressing NP-1, and inhibited stimulation of KDR and PLC-gamma tyrosine phosphorylation, activation of ERKs1/2 and prostanoid production. These findings characterize the first specific antagonist of VEGF-A165 binding to NP-1 and demonstrate that NP-1 is essential for optimum KDR activation and intracellular signaling. The results also identify a key role for the C-terminal exon 8 domain in VEGF-A165 binding to NP-1. 相似文献
Umbilical cord blood‐derived USSCs (unrestricted somatic stem cells) have recently been considered as a potential source for stem cell therapy and transplantation due to their characteristics such as easy accessibility, low immunogenicity, self‐renewing and multilineage differentiation potential. Stem cell homing is a key factor in successful transplantation, which is regulated by CXCR4 in stem cells. In this study, we evaluated the expression of CXCR4 in USSCs different passages. Moreover, the effect of VEGF (vascular endothelial growth factor) and IGF‐1 (insulin‐like growth factor 1) on its expression was assessed. It was shown that the expression of CXCR4 in USSCs decreased with the increase in passage number. It was also revealed that VEGF increased surface expression and mRNA level of CXCR4 in USSCs, while IGF‐1 decreased its expression. When VEGF and IGF‐1 were administered simultaneously, CXCR4 expression was increased, but the expression level was less than VEGF alone. Finally, it was shown that over‐expression of CXCR4 enhanced the migratory capacity of USSCs. The increase of CXCR4 expression, here caused by VEGF in USSCs, can improve the efficacy of stem cell therapy and transplantation after long‐term culture of stem cells before clinical use. 相似文献