排序方式: 共有276条查询结果,搜索用时 15 毫秒
41.
Macroautophagy is a process accompanied by the formation of double-membrane vesicles known as autophagosomes. Although in recently published reviews various methods for the detection of autophagosomes were described, a reliable technique for the automated quantitative evaluation of autophagosome accumulation is still lacking. Here we developed a new assay which is based on the fact that the number of autophagosomes is correlated with the amount of the LC3-II protein, which is specifically associated with autophagosomal membranes. Monitoring of autophagosome: accumulation was performed by extracting the membrane-unbound LC3-I form of the protein from cells, followed by flow cytometric detection of the autophagosomal membrane-associated fraction of LC3-II. This assay could be used for monitoring autophagosomes by flow cytometry utilizing immunostaining with the antibody against the LC3 protein. It is also suitable for analysis of: cells expressing GFP-LC3. We showed that co-staining with propidium iodide allows detection of basal level of autophagosomes in different phases of the cell cycle. Autophagy activators, such as: rapamycin or cell starvation, were able to induce accumulation of autophagosomes in G0/G1, S and G2/M phases. Thus, utilization of this assay simplifies monitoring of autophagosome accumulation induced by different activators or inhibitors of macroautophagy and it is suggested as being useful in the detection of autophagosomes in different phases of the cell cycle. 相似文献
42.
Malihe-Sadat Poormasjedi-Meibod Raza B. Jalili Azadeh Hosseini-Tabatabaei Ryan Hartwell Aziz Ghahary 《PloS one》2013,8(8)
Successful long-term treatment of type-1 diabetes mainly relies on replacement of β-cells via islet transplantation. Donor shortage is one of the main obstacles preventing transplantation from becoming the treatment of choice. Although animal organs could be an alternative source for transplantation, common immunosuppressive treatments demonstrate low efficacy in preventing xenorejection. Immunoprotective effects of indoleamine 2,3-dioxygenase (IDO) on T-cell mediated allorejection has been extensively studied. Our studies revealed that IDO expression by fibroblasts, induced apoptosis in T-cells while not affecting non-immune cell survival/function. Since macrophages play a pivotal role in xenograft rejection, herein we investigated the effect of IDO-induced tryptophan deficiency/kynurenine accumulation on macrophage function/survival. Moreover, we evaluated the local immunosuppressive effect of IDO on islet-xenograft protection. Our results indicated that IDO expression by bystander fibroblasts significantly reduced the viability of primary macrophages via apoptosis induction. Treatment of peritoneal macrophages by IDO-expressing fibroblast conditioned medium significantly reduced their proinflammatory activity through inhibition of iNOS expression. To determine whether IDO-induced tryptophan starvation or kynurenine accumulation is responsible for macrophage apoptosis and inhibition of their proinflammatory activity, Raw264.7 cell viability and proinflammatory responses were evaluated in tryptophan deficient medium or in the presence of kynurenine. Tryptophan deficiency, but not kynurenine accumulation, reduced Raw264.7 cell viability and suppressed their proinflammatory activity. Next a three-dimensional islet-xenograft was engineered by embedding rat islets within either control or IDO–expressing fibroblast-populated collagen matrix. Islets morphology and immune cell infiltration were then studied in the xenografts transplanted into the C57BL/6 mouse renal sub-capsular space. Local IDO significantly decreased the number of infiltrating macrophages (11±1.47 vs. 70.5±7.57 cells/HPF), T-cells (8.75±1.03 vs. 75.75±5.72 cells/HPF) and iNOS expression in IDO-expressing xenografts versus controls. Islet morphology remained intact in IDO-expressing grafts and islets were strongly stained for insulin/glucagon compared to control. These findings support the immunosuppressive role of IDO on macrophage-mediated xeno-rejection. 相似文献
43.
A Zaferani RR Vivès P van der Pol GJ Navis MR Daha C van Kooten H Lortat-Jacob MA Seelen J van den Born 《The Journal of biological chemistry》2012,287(37):31471-31481
During proteinuria, renal tubular epithelial cells become exposed to ultrafiltrate-derived serum proteins, including complement factors. Recently, we showed that properdin binds to tubular heparan sulfates (HS). We now document that factor H also binds to tubular HS, although to a different epitope than properdin. Factor H was present on the urinary side of renal tubular cells in proteinuric, but not in normal renal tissues and colocalized with properdin in proteinuric kidneys. Factor H dose-dependently bound to proximal tubular epithelial cells (PTEC) in vitro. Preincubation of factor H with exogenous heparin and pretreatment of PTECs with heparitinase abolished the binding to PTECs. Surface plasmon resonance experiments showed high affinity of factor H for heparin and HS (K(D) values of 32 and 93 nm, respectively). Using a library of HS-like polysaccharides, we showed that chain length and high sulfation density are the most important determinants for glycosaminoglycan-factor H interaction and clearly differ from properdin-heparinoid interaction. Coincubation of properdin and factor H did not hamper HS/heparin binding of one another, indicating recognition of different nonoverlapping epitopes on HS/heparin by factor H and properdin. Finally we showed that certain low anticoagulant heparinoids can inhibit properdin binding to tubular HS, with a minor effect on factor H binding to tubular HS. As a result, these heparinoids can control the alternative complement pathway. In conclusion, factor H and properdin interact with different HS epitopes of PTECs. These interactions can be manipulated with some low anticoagulant heparinoids, which can be important for preventing complement-derived tubular injury in proteinuric renal diseases. 相似文献
44.
Hadi Mozafari Zohreh Rahimi Azadeh Heidarpour Mahsa Fallahi Adraiana Muniz 《Molecular biology reports》2009,36(8):2361-2364
It has been suggested that the allele frequency of thrombophilic mutations is affected by glucose-6-phosphate dehydrogenase
(G6PD) deficiency. The prevalence of thrombophilic mutations were studied in sixty G6PD deficient individuals including 57
males and three females with the mean age of 15 ± 3.08 and 110 age and sex matched healthy individuals consisted of 95 males and 15 females with
the mean age of 16.19 ± 2.17 from the Kermanshah Province of Iran. Using a combination of PCR-RFLP technique, single strand
conformation polymorphism (SSCP) analysis and DNA sequencing polymorphic G6PD mutations were identified. The factor V Leiden,
prothrombin G20210A and methylenetetrahydrofolate reductase (MTHFR) C677T were detected by PCR-RFLP method using MnlI, HindIII
and HinfI restriction enzymes, respectively. Three mutations, G6PD Mediterranean, G6PD Chatham and G6PD Cosenza were identified
in 60 G6PD deficient individuals with highest prevalence of G6PD Mediterranean (91.6%). In G6PD deficient individuals the
prevalence of factor V Leiden tended to be higher (5%) compared to healthy individuals (2.7%). The prevalence of prothrombin
G20210A mutation in G6PD deficient individuals was 1.7%. However, in normal subjects the prevalence of this mutation was 2.7%.
The frequency of T allele in G6PD deficient individuals were insignificantly higher (29.16%) than those in healthy individuals
(26.8%). Our finding indicates that the prevalence of factor V Leiden, prothrombin G20210A and MTHFR C677T in G6PD deficient
individuals is not statistically different compared to normal subjects and G6PD deficiency is not associated with these thrombophilic
mutations in Western Iran. 相似文献
45.
Aramvash Asieh Zarei Hadis Azizi Azadeh Seyedkarimi Mansooreh Sadat 《International journal of peptide research and therapeutics》2019,25(2):753-760
International Journal of Peptide Research and Therapeutics - RADA 16-I is an amphiphilic peptide which can form macroscopic scaffolds through self-assembly and has found many applications in tissue... 相似文献
46.
The fabrication of Bacillus subtilis endospore imprinted conducting polymer films and subsequent electrochemical detection of bound spores is reported. Imprinted films were prepared by absorbing spores on the surface of glassy carbon electrodes upon which a polypyrrole, followed by a poly(3-methylthiophene), layer were electrochemically deposited. Spore template release was achieved through soaking the modified electrode in DMSO. Binding of endospores to imprinted films could be detected via impedance spectroscopy by monitoring changes in Y' (susceptance) using Mn(II)Cl2 (0.5M pH 3) as the supporting electrolyte. Here, the change in Y' could be correlated to spore densities between 10(4) and 10(7)cfu/ml. More sensitive detection of absorbed spores was achieved by following endospore germination via changes in film charge as measured using cyclic voltammetry. Here, imprinted films were submerged in spore suspensions to permit absorption, heat activated at 70 degrees C for 10 min prior to transferring to an electrochemical cell containing germination activators. By using the assay format it was possible to detect 10(2)cfu/ml. The observed changes in film charge could be attributed to the interaction of the supporting conducting polymer with dipicolinic acid (DPA) and other constituents released from the core in the course of germination. In all cases, it was not possible to regenerate the imprinted films without losing electrode response. In summary, the study has provided proof-of-concept for fabricating microbial imprinted films using conducting polymers. 相似文献
47.
Jamshid Davoodi Mohammad-Hossein Ghahremani Ali Es-haghi Azadeh Mohammad-gholi Alex MacKenzie 《The international journal of biochemistry & cell biology》2010,42(6):958-964
Ability of the full length NAIP and its BIR3 domain in inhibition of the proteases of the intrinsic apoptosis pathway was investigated. Activity of endogenous executioner caspases was drastically reduced by both recombinant NAIP-BIR3 (NBIR3) and the full length protein. Western blotting experiments showed that the full length NAIP and its BIR3 domain inhibited the cleavage of procaspase-3 by apoptosome activated caspase-9. Moreover, full length NAIP inhibited autocatalytic processing of procaspase-9 in the apoptosome complex indicating that unlike other inhibitor of apoptosis proteins (IAPs) human NAIP is an inhibitor of procaspase-9. Furthermore, inhibition of single-chain caspase-9 (human caspase-9, D315, D330/A point mutations that abrogate the proteolytic processing but not the catalytic activity of caspase-9) by the BIR3 domain indicated that the this domain is the caspase-9 interacting moiety. Consistently, pull-down experiments of single-chain capsase-9 in apoptosome complex by the NBIR3 but not the X-linked inhibitor of apoptosis protein (XIAP)-BIR3 domain confirmed that the protein can associate with procaspase-9 prior to its autoproteolysis upon apoptosome formation. Interaction studies revealed the association of C338W variant of the NBIR3, but not the wild type protein with both SMAC-peptide and the SMAC protein. These data indicate that mutation of C338 to Trp is sufficient to accommodate the interaction of NAIP-BIR3 with SMAC-peptide and protein. Taken together, these results demonstrate that NAIP is evolved to prevent apoptosis right at the initiation stage of apoptosome formation and this inhibition cannot be antagonized by SMAC-type proteins. 相似文献
48.
Azadeh Rezaei Mehdi Mahmoodi Fatemeh Mohammadizadeh Maryam Mohamadi Mohammad Reza Hajizadeh Mohammad Reza Mirzaei Soudeh Khanamani Falahati-pour 《Journal of cellular biochemistry》2019,120(8):12280-12289
Recent advances have put fundamental focus on the application of copper (II) (Cu [II]) complexes as agents for fighting against cancer. To determine whether [Cu(L)(2imi)] complex as a novel Cu complex can induce apoptosis in HepG2 as cancerous cells and L929 as normal cells via extrinsic or intrinsic apoptotic pathways, both cell lines were treated for 24 and 48 hours at IC50 concentrations of [Cu(L)(2imi)] complex. Then, the expression of some apoptosis-related genes including p53, caspase-8, bcl-2, and bax were assayed by real-time polymerase chain reaction. The [Cu(L)(2imi)] complex seems to inhibit the expression of bcl-2 in complex-treated HepG2 cancerous cells following the 24- and 48-hour treatment. The complex upregulated the p53, bax, and caspase-8 genes, therefore treatment of HepG2 cancerous cells with [Cu(L)(2imi)] complex induces programmed cell death via the upregulation of relative bax/bcl-2 ratio. Finally, this copper complex triggered apoptosis in HepG2 cells via both intrinsic and extrinsic pathway, whereas treatment of normal L929 cells with this complex induce apoptosis only via intrinsic pathway with the upregulation of relative bax/bcl-2 ratio and does not affect the expression level of caspase-8 gene and does not trigger the extrinsic pathway. Finally, these results obtained from present study confirm the role of a novel Cu complex on the induction of apoptosis process in HepG2 and L929 cells by overexpression of bax, inhibition of bcl-2 and increase of the relative bax/bcl-2 ratio. These results support that the [Cu(L)(2imi)] complex is able to induce apoptosis in cancerous cells, therefore, it has a potential for development as a novel anticancer drug. 相似文献
49.
Payabvash S Beheshtian A Salmasi AH Kiumehr S Ghahremani MH Tavangar SM Sabzevari O Dehpour AR 《Life sciences》2006,79(10):972-980
Recently many researchers have proposed a protective role for morphine against tumor growth and metastasis, especially through induction of apoptosis in tumoral cells. These findings may lead to underestimation of cytotoxic effects of opioid drugs which are usually expected only at high doses. The present study was conducted to clarify whether repeated morphine administration, which is commonly used for relief from chronic pain, would interfere with liver antioxidant defence and hepatocytes vitality. Morphine was injected repeatedly at doses that have been reported to relieve cancer pain and reduce tumor spread in mice (5 and 10 mg/kg/day for nine consecutive days). The changes in hepatic glutathione concentration, its synthesis pathway and enzymatic antioxidant defense revealed the pro-oxidant effects of chronic morphine treatment on the liver. None of these changes were observed in those mice that were co-treated with naltrexone (opioid antagonist) and same doses of morphine. However induction of liver conjugating enzymes following morphine treatment was not receptor mediated. Moreover, chronic morphine treatment induced hepatocytes apoptosis. Interestingly, the apoptotic changes were antagonized by co-administration of either naltrexone or thiol antioxidant. In conclusion, although hepatotoxic effects of morphine at high doses have been reported previously, our findings propose that repeated morphine administration even at lower doses would induce oxidative stress in the liver, which may contribute to induction of apoptosis in hepatocytes. Since many of the observed adverse effects were mediated by opioid receptors, our results suggest that other opioid analgesics should also be used more cautiously. 相似文献
50.
Arsalan Khalili-Moghadam Alireza Saboori Alireza Nemati Azadeh Zahedi Golpayegani 《Biologia》2018,73(10):977-986
In this paper, we redescribe Gaeolaelaps deinos (Zeman 1982) based on morphological characters of female and male specimens collected from nests of Lasius sp. (Hymenoptera: Formicidae) Khuzestan and Chaharmahal va Bakhtiari Provinces, Iran, and based on its holotype photos. We also present an identification key for Gaeolaelaps aculeifer-like species group from Iran. 相似文献