首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   522篇
  免费   32篇
  2024年   1篇
  2023年   6篇
  2022年   20篇
  2021年   27篇
  2020年   24篇
  2019年   34篇
  2018年   27篇
  2017年   20篇
  2016年   28篇
  2015年   28篇
  2014年   34篇
  2013年   49篇
  2012年   52篇
  2011年   33篇
  2010年   27篇
  2009年   16篇
  2008年   21篇
  2007年   25篇
  2006年   17篇
  2005年   8篇
  2004年   13篇
  2003年   11篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
排序方式: 共有554条查询结果,搜索用时 218 毫秒
61.
62.
It is believed that ROS-induced oxidative stress triggers numerous signaling pathways which are involved in neurodegenerative diseases, including Alzheimer’s disease. To find the effective drugs for neurodegenerative diseases, the deep delve into molecular mechanisms underlie these diseases is necessary. In the current study, we investigated the effects of flavonoid baicalein on H2O2-induced oxidative stress and cell death in SK-N-MC cells. Our results revealed that the treatment of SK-N-MC cells with H2O2 led to a decrease in cell viability through phosphorylation and activation of extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs) pathways followed by increase in Bax/Bcl2 ratio and initiation of caspase-dependent apoptotic pathways. In addition, our results showed that the exposure of SK-N-MC cells to H2O2 ended up in reduction of glutathione (GSH) levels of SK-N-MC cells via JNK/ERK-mediated down-regulation of γ-glutamyl-cysteine synthetase (γ-GCS) expression. Our results demonstrated that flavonoid baicalein protected against H2O2-induced cell death by inhibition of JNK/ERK pathways activation and other key molecules in apoptotic pathways, including blockage of Bax and caspase-9 activation, induction of Bcl-2 expression and prevention of cell death. Baicalein supported intracellular defense mechanisms through maintaining GSH levels in SK-N-MC cells by the removal of inhibition effects of JNK/ERK pathways from γ-GCS expression. In addition, baicalein attenuated lipid and protein peroxidation and intracellular reactive oxygen species in SK-N-MC cells. In accordance with these observations, baicalein can be a promising candidate in antioxidant therapy and designing of natural-based drug for ROS-induced neurodegenerative disorders.  相似文献   
63.
Protein aggregation is a pathological hallmark of several human disorders, and a central problem in biotechnology, occurring during purification, sterilization, shipping and storage of protein structures. The process is a very complex one, characterized with a remarkable polymorphism of aggregates, including soluble amyloid oligomers, amyloid fibrils and amorphous species. While amyloid structure formation has been extensively investigated during the recent years, amorphous aggregation is still not well characterized. Use of small molecules that affect this process could be informative in this regard. In order to explore the inhibiting effect of small molecules on the amorphous aggregate formation, yeast hexokinase-B, a key enzyme in metabolism, has been chosen for the present study. Thermal aggregation of the enzyme was investigated in 50 mM phosphate buffer, pH 7 at 55°C and the extent of aggregation was measured by monitoring the increase in absorbance at 350 nm versus time. Possible anti-aggregation effects of a variety of non-specific ligands including indole, tryptophan, carbinol, and indomethacin were explored. Turbidity of the protein solutions was found to be diminished by the presence of these small molecules in the above conditions, with the highest effects being exerted by indomethacin. Dynamic light scattering and HPLC confirmed that indomethacin had the highest anti-aggregation effect. These observations, taken together, suggest that the indole ring is likely to play an important role in aggregation inhibition.  相似文献   
64.
In this study a comparison was made between type 1 and type 2 isopentenyl diphosphate isomerases (IDI) in improving lycopene production in Escherichia coli. The corresponding genes of Bacillus licheniformis and the host (i Bl and i Ec , respectively) were expressed in lycopene producing E. coli strains by pTlyciBl and pTlyciEc plasmids, under the control of tac promoter. The results showed that the overexpression of i Ec improved the lycopene production from 33 ± 1 in E. coli Tlyc to 68 ± 3 mg/gDCW in E. coli TlyciEc. In contrast, the expression of i Bl increased the lycopene production more efficiently up to 80 ± 9 mg/gDCW in E. coli TlyciBl. The introduction of a heterologous mevalonate pathway to elevate the IPP abundance resulted in a lycopene production up to 132 ± 5 mg/gDCW with i Ec in E. coli TlyciEc-mev and 181 ± 9 mg/gDCW with i Bl in E. coli TlyciBl-mev, that is, 4 and 5.6 times respectively. When fructose, mannose, arabinose, and acetate were each used as an auxiliary substrate with glycerol, lycopene production was inhibited by different extents. Among auxiliary substrates tested, only citrate was an improving one for lycopene production in all strains with a maximum of 198 ± 3 mg/gDCW in E. coli TlyciBl-mev. It may be concluded that the type 2 IDI performs better than the type 1 in metabolic engineering attempts for isoprenoid production in E. coli. In addition, the metabolic engineering of citrate pathway seems a promising approach to have more isoprenoid accumulation in E. coli.  相似文献   
65.
66.
This paper reports on three species of mites of the genus Laelaspis in Iran - Laelaspis calidus Berlese from Pheidole pallidula, Laelaspis humeratus (Berlese) from Tetramorium caespitum and Laelaspis dariusi Joharchi & Jalaeian, sp. n. fromsoil. The new species is described and illustrations provided.  相似文献   
67.
The interaction between the synaptic adhesion molecules neuroligins and neurexins is essential for connecting the pre- and post-synaptic neurons, modulating neuronal signal transmission, and facilitating neuronal axogenesis. Here, we describe the simultaneous expression of the extracellular domain of rat neuroligin-1 (NL1) proteins along with the enhanced green fluorescent protein (EGFP) using the bi-cistronic baculovirus expression vector system (bi-BEVS). Recombinant rat NL1 protein, fused with signal sequence derived from human Azurocidin gene (AzSP), was secreted into the culture medium and the optimum harvest time for NL1 protein before the lysis of infected cells was determined through the release of cytosolic EGFP. The NL1 protein (0.129±0.013 mg/8×10(7) High Five cells; ~96% purity by metal affinity chromatography) was obtained from the supernatant of the recombinant virus-infected insect cells. A novel chip was employed to address whether the recombinant NL1 is functional in axogenesis. The purified rat NL1 promoted and enhanced the growth rate (137.07±9.74 μm/day) of the axon on NL1/PLL (poly-L-lysine)-coated fine lines on the chip compared to those lines that were coated with PLL alone (105.53±4.53 μm/day). These results were confirmed by fluorescence immunocytochemistry and demonstrated that the recombinant protein can be purified by a one-step process using IMAC combined with monitoring of cell lysis by bi-BEVS. This technique along with our novel chip offers a simple, cost-effective and useful platform for understanding the roles of NL1 protein in neuronal regeneration and synaptic formation studies.  相似文献   
68.
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that belong to the Cys-loop receptor superfamily. These receptors are allosteric proteins that exist in different conformational states, including resting (closed), activated (open), and desensitized (closed) states. The acetylcholine binding protein (AChBP) is a structural homologue of the extracellular ligand-binding domain of nAChRs. In previous studies, the degree of the C-loop radial extension of AChBP has been assigned to different conformational states of nAChRs. It has been suggested that a closed C-loop is preferred for the active conformation of nAChRs in complex with agonists whereas an open C-loop reflects an antagonist-bound (closed) state. In this work, we have determined the crystal structure of AChBP from the water snail Lymnaea stagnalis (Ls) in complex with dihydro-β-erythroidine (DHβE), which is a potent competitive antagonist of nAChRs. The structure reveals that binding of DHβE to AChBP imposes closure of the C-loop as agonists, but also a shift perpendicular to previously observed C-loop movements. These observations suggest that DHβE may antagonize the receptor via a different mechanism compared to prototypical antagonists and toxins.  相似文献   
69.
Correction to A. Louren?o, M. Conover, A. Wong, A. Nematzadeh, F. Pan, H. Shatkay, and L.M. Rocha."A Linear Classifier Based on Entity Recognition Tools and a Statistical Approach to Method Extraction in the Protein-Protein Interaction Literature". BMC Bioinformatics 2011, 12(Suppl 8):S12. doi:http://10.1186/1471-2105-12-S8-S12.  相似文献   
70.
Chemical modification or mutation of proteins may bring about significant changes in the net charge or surface hydrophobicity of a protein structure. Such events may be of major physiological significance and may provide important insights into the genetics of amyloid diseases. In the present study, fibrillation potential of native and chemically-modified forms of bovine carbonic anhydrase II (BCA II) were investigated. Initially, various denaturing conditions including low pH and high temperatures were tested to induce fibrillation. At a low pH of around 2.4, where the protein is totally dissociated, the apo form was found to take up a pre-molten globular (PMG) conformation with the capacity for fibril formation. Upon increasing the pH to around 3.6, a molten globular (MG) form became abundant, forming amorphous aggregates. Charge neutralization and enhancement of hydrophobicity by methylation, acetylation and propionylation of lysine residues appeared very effective in promoting fibrillation of both the apo and holo forms under native conditions, the rates and extents of which were directly proportional to surface hydrophobicity, and influenced by salt concentration and temperature. These modified structures underwent more pronounced fibrillation under native conditions, than the PMG intermediate form, observed under denaturing conditions. The nature of the fibrillation products obtained from intermediate and modified structures were characterized and compared and their possible cytotoxicity determined. Results are discussed in terms of the importance of surface net charge and hydrophobicity in controlling protein aggregation. A discussion on the physiological significance of the observations is also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号