排序方式: 共有15条查询结果,搜索用时 9 毫秒
11.
Periodontal diseases can lead to soft tissue defects. Tissue engineering can provide functional replacements for damaged tissues. Recently, electrospun nanofibers have attracted great interest for tissue engineering and drug delivery applications. This has been revealed that statins exhibit positive impacts on the proliferation and regeneration of periodontal tissues. Electrospun simvastatin loaded poly (lactic-co-glycolic acid) (SIM-PLGA-NF) were prepared using electrospinning technique. Optimal conditions for preparation of SIM-PLGA-NF (PLGA concentration of 30 wt%, voltage of 15 kV, and flow rate of 1.5 ml h−1) were identified using a 23 factorial design. The optimized SIM-PLGA-NFs (diameter of 640.2 ± 32.5 nm and simvastatin entrapment efficacy of 99.6 ± 1.5%) were surface modified with 1% w/v hyaluronic acid solution (1%HA- SIM-PLGA-NF) to improve their compatibility with fibroblasts and potential application as a periodontal tissue engineering scaffold. HA-SIM-PLGA NFs were analyzed using SEM, FTIR, and XRD. 1%HA-SIM-PLGA-NF had uniform, bead-free and interwoven morphology, which is similar to the extracellular matrix. The mechanical performance of SIM-PLGA-NFs and release profile of simvastatin from these nanofibers have been also greatly improved after coating with HA. In vitro cellular tests showed that the proliferation, adhesion, and differentiation of fibroblast cells positively enhanced on the surface of 1%HA- SIM-PLGA-NF. These results demonstrate the potential application of 1%HA-SIM-PLGA-NFs as a scaffold for periodontal tissue engineering. 相似文献
12.
AbstractNon-covalent complexes of urease/polyethylene glycol (PEG)-aldehyde were synthesized using regular molar ratios of urease and PEG-aldehyde at room temperature. The physical properties of the non-covalent complexes were analyzed in order to investigate the impact of coupling ratio, temperature, pH, storage stability, and thermal stability. Urease activity was analyzed by UV–Vis spectrophotometer at 630?nm. The results showed that the strongest thermal resistance was obtained using nU/nPEG:1/1 (mg/mL) complex within all molar ratios tested. The enzymatic activity of nU/nPEG:1/1 complex doubled the activity of the free enzyme. Therefore, this complex was chosen to be used in the analyses. When coupled with PEG-aldehyde, urease exhibited improved activity between pH 4.0–9.0 and the optimum pH was found to be 7.0. The thermal inactivation results of the complex demonstrated that higher activity remained (40%) when compared with the free enzyme (10%) at 60?°C. The storage stability of the non-covalent complex was 4 weeks which was greater than the storage stability of the free enzyme. A kinetic model was suggested in order to reveal the mechanism of enzymatic conversion. Potentiometric urea biosensor was prepared using two different membranes: carboxylated poly vinyl chloride (PVC) and palmitic acid containing PVC. The potentiometric responses of both sensors were tested against pH and temperature and the best results were obtained at pH 7.0 and 20–30?°C. Also, selectivity of the suggested biosensors toward Na+, Li+ Ca2+, and K+ ions was evaluated and the reproducibility responses of the urea biosensors were measured with acceptable results. 相似文献
13.
AbstractIn this study, the different mole ratios of glucose oxidase/chitosan/dextran–aldehyde and glucose oxidase/chitosan/dextran–sulfate complexes were synthesized. The modification of glucose oxidase by non-covalent complexation with dextran and chitosan in different molar ratios was studied in order to increase the enzyme activity. The enzyme/polymer complexes obtained were investigated by UV spectrophotometer and dynamic light scattering. Activity determination of synthesized complexes and free enzyme were performed at a temperature range. The best results were obtained by Cchitosan/Cdextran–aldehyde = 10/1 ratio and Cchitosan/Cdextran–sulfate = 1/5 ratio that were used in thermal stability, shelf life, salt stress, and ethanol effect experiments. The results demonstrated that both complexes were thermally stable at 60?°C and had superior storage stability compared to the free glucose oxidase. Complexes showed higher enzymatic activity than free enzyme in the organic solvent environment using 10% ethanol. The complexes were resistant to salt stress containing 0.1?M NaCl or CaCl2. The particle size distribution results of the triple complex evaluated the complexation of the chitosan, dextran derivative, and glucose oxidase. The average size of the triple complex in diameter was found to be 325.8?±?9.3?nm. Overall findings suggest that the complexes of glucose oxidase, chitosan, and dextran showed significant enhancement in the enzyme activity. 相似文献
14.
Preparation of an injectable doxorubicin surface modified cellulose nanofiber gel and evaluation of its anti‐tumor and anti‐metastasis activity in melanoma 下载免费PDF全文
Cellulose nanofibers (Cel‐NFs) gel can be considered as a useful drug carrier because of its biocompatibility, high specific surface area, and high loading capacity of drugs. Injectable Cel‐NFs gel could deliver doxorubicin (DOX) for localized chemotherapy of melanoma and suppress melanoma cells migration because of the physical barrier property of Cel‐NFs. We prepared DOX surface modified Cel‐NFs (DOX‐Cel‐NFs) gel by the electrostatic attachment of DOX molecules on the surface of Cel‐NFs. The increase in the zeta potential of nanofibers and the changes in the FTIR spectra of DOX‐Cel‐NFs compared to Cel‐NFs proved this attachment. DOX‐Cel‐NFs showed nano‐fibrous structure with an average diameter of 22.32 ± 10.66 nm after analyzing using field emission scanning electron microscopy. The suitable injectability of DOX‐Cel‐NFs gel verified its promising application for the localized chemotherapy. DOX‐Cel‐NFs gel exhibited a sustained drug release manner. The cytotoxicity results showed that DOX‐Cel‐NFs were more cytotoxic against melanoma cancer cells than the free DOX during 48 h incubation period. Moreover, DOX‐Cel‐NFs gel can suppress the melanoma cancer cells migration efficiently. Thus our results emphasize the potential of DOX‐Cel‐NFs gel as a chemotherapeutic agent for local delivery of DOX in order to treat melanoma and prevent its metastasis. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:537–545, 2018 相似文献
15.