首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  33篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2016年   4篇
  2015年   3篇
  2013年   1篇
  2011年   1篇
  2010年   6篇
  2008年   4篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
11.
Current evidence suggests a multifactorial etiology to pelvic organ prolapse (POP), including genetic predisposition. We conducted a genome-wide association study of POP in African American (AA) and Hispanic (HP) women from the Women’s Health Initiative Hormone Therapy study. Cases were defined as any POP (grades 1–3) or moderate/severe POP (grades 2–3), while controls had grade 0 POP. We performed race-specific multiple logistic regression analyses between SNPs imputed to 1000 genomes in relation to POP (grade 0 vs 1–3; grade 0 vs 2–3) adjusting for age at diagnosis, body mass index, parity, and genetic ancestry. There were 1274 controls and 1427 cases of any POP and 317 cases of moderate/severe POP. Although none of the analyses reached genome-wide significance (p<5x10-8), we noted variants in several loci that met p<10−6. In race-specific analysis of grade 0 vs 2–3, intronic SNPs in the CPE gene (rs28573326, OR:2.14; 95% CI 1.62–2.83; p = 1.0x10-7) were associated with POP in AAs, and SNPs in the gene AL132709.5 (rs1950626, OR:2.96; 95% CI 1.96–4.48, p = 2.6x10-7) were associated with POP in HPs. Inverse variance fixed-effect meta-analysis of the race-specific results showed suggestive signals for SNPs in the DPP6 gene (rs11243354, OR:1.36; p = 4.2x10-7) in the grade 0 vs 1–3 analyses and for SNPs around PGBD5 (rs740494, OR:2.17; p = 8.6x10-7) and SHC3 (rs2209875, OR:0.60; p = 9.3x10-7) in the grade 0 vs 2–3 analyses. While we did not identify genome-wide significant findings, we document several SNPs reaching suggestive statistical significance. Further interrogation of POP in larger minority samples is warranted.  相似文献   
12.
13.
Glasscock E  Singhania A  Tanouye MA 《Genetics》2005,170(4):1677-1689
Seizure-suppressor mutations provide unique insight into the genes and mechanisms involved in regulating nervous system excitability. Drosophila bang-sensitive (BS) mutants present a useful tool for identifying seizure suppressors since they are a well-characterized epilepsy model. Here we describe the isolation and characterization of a new Drosophila seizure-suppressor mutant that results from disruption of the meiotic gene mei-P26, which belongs to the RBCC-NHL family of proteins. The mei-P26 mutation reduces seizures in easily shocked (eas) and slamdance (sda) epileptic flies following mechanical stimulation and electroconvulsive shock. In addition, mutant mei-P26 flies exhibit seizure thresholds at least threefold greater than those of wild type. The mei-P26 phenotypes appear to result from missense mutation of a critical residue in the NHL protein-protein interaction domain of the protein. These results reveal a surprising role for mei-P26 outside of the germline as a regulator of seizure susceptibility, possibly by affecting synaptic development as a ubiquitin ligase.  相似文献   
14.
The restricted neutralization breadth of vaccine-elicited antibodies is a major limitation of current human immunodeficiency virus-1 (HIV-1) candidate vaccines. In order to permit the efficient identification of vaccines with enhanced capacity for eliciting cross-reactive neutralizing antibodies (NAbs) and to assess the overall breadth and potency of vaccine-elicited NAb reactivity, we assembled a panel of 109 molecularly cloned HIV-1 Env pseudoviruses representing a broad range of genetic and geographic diversity. Viral isolates from all major circulating genetic subtypes were included, as were viruses derived shortly after transmission and during the early and chronic stages of infection. We assembled a panel of genetically diverse HIV-1-positive (HIV-1+) plasma pools to assess the neutralization sensitivities of the entire virus panel. When the viruses were rank ordered according to the average sensitivity to neutralization by the HIV-1+ plasmas, a continuum of average sensitivity was observed. Clustering analysis of the patterns of sensitivity defined four subgroups of viruses: those having very high (tier 1A), above-average (tier 1B), moderate (tier 2), or low (tier 3) sensitivity to antibody-mediated neutralization. We also investigated potential associations between characteristics of the viral isolates (clade, stage of infection, and source of virus) and sensitivity to NAb. In particular, higher levels of NAb activity were observed when the virus and plasma pool were matched in clade. These data provide the first systematic assessment of the overall neutralization sensitivities of a genetically and geographically diverse panel of circulating HIV-1 strains. These reference viruses can facilitate the systematic characterization of NAb responses elicited by candidate vaccine immunogens.The development of an HIV-1 vaccine that can elicit protective humoral and cellular immunity is one of the highest priorities in the global fight against HIV/AIDS (2, 44). Data from lentiviral animal models suggest that antibodies capable of neutralizing primary strains of HIV-1 may have the capacity to prevent HIV-1 infection (1, 28, 30, 35). However, the ability to design immunogens that can elicit such broadly reactive neutralizing antibodies (NAbs) has proven to be a formidable obstacle, due in part to the extensive genetic diversity of HIV-1 and the complex escape mechanisms employed by the envelope gp120 and gp41 glycoproteins that form the trimeric viral envelope spike (Env) (20, 34, 45). As improved vaccine immunogens enter the stage of detailed preclinical analysis, the in vitro assays used for evaluating vaccine sera will need to detect incremental advances in the magnitude, breadth, and durability of NAb responses (37). Such data can then be used to distinguish and prioritize among antibody-based vaccine immunogens. Furthermore, highly reproducible and quantitative data on vaccine-elicited NAbs can enhance our understanding of the relationship between Env immunogen design and the resulting antibody response generated.Current recommendations for evaluating candidate vaccine sera for NAb activity include the use of standard reference panels of molecularly cloned HIV-1 Env pseudoviruses and a tiered algorithm of testing (27). Reference virus panels should represent genetically and geographically diverse subsets of viruses with neutralization phenotypes that are generally representative of primary isolate strains that a vaccine would need to protect against. As such, standard reference panels for HIV-1 subtypes B and C have been described (22, 23), and efforts continue toward the creation of virus reference panels representing additional genetic subtypes. For tiered evaluation of NAb activity, vaccine sera are first tested against homologous Env pseudoviruses and/or a small number of isolates that are known to be highly sensitive to antibody-mediated neutralization (commonly referred to as tier 1 viruses). A more rigorous assessment of the potency and breadth of vaccine-induced NAbs entails testing against more resistant reference panel viruses (commonly referred to as tier 2 viruses) that are either matched or mismatched in genetic subtype to the vaccine immunogen (second and third tiers of testing, respectively). This tiered approach for testing candidate HIV-1 vaccine sera is advantageous in that it provides increasingly stringent levels for assessing the potency and breadth of NAbs, uses standardized panels of reference viruses for consistency and reproducibility, and allows for the generation of comparative data sets for evaluating different candidate vaccine regimens.While the tiered algorithm for evaluating vaccine sera has gained acceptance in the field, a major limitation has been the lack of objective data to characterize HIV-1 Env pseudoviruses according to their overall sensitivity or resistance to antibody-mediated neutralization. The category of sensitive, tier 1 viruses arose in part from the observation that HIV-1 isolates passaged through T-cell lines often become highly sensitive to antibody-mediated neutralization (33). Compared to these laboratory-adapted viruses, most primary isolate strains are moderately resistant to NAbs. Yet, even among recently isolated circulating viral Envs, there is a wide spectrum of neutralization sensitivity. Some HIV-1 isolates have a neutralization phenotype closer to that of tier 1 viruses, while others appear to be quite neutralization resistant (6, 19, 22, 23). Overall, there are few data from which to understand or categorize the viral neutralization phenotypes of HIV-1 strains. As a result, we have a limited ability to assess the potential potency of vaccine-elicited NAbs or to estimate the percentage of circulating HIV-1 isolates that would be neutralized. Further categorization of isolates into distinct subgroups based on sensitivity to NAbs may reveal patterns of neutralization that could provide a greater understanding of the NAb response generated by current and future vaccine immunogens. In addition, the structure-based design of novel immunogens may be facilitated by an ability to monitor the types of viruses neutralized and to specifically map the viral epitopes targeted by vaccine-elicited NAbs.In this study, we assembled a diverse panel of 109 HIV-1 Env pseudoviruses, including multiple representatives from clades A, B, and C and circulating recombinant forms (CRFs) CRF07_BC and CRF02_AG-related. These were tested for their sensitivities using HIV-1-positive (HIV-1+) plasma samples representative of clades A, B, and C and CRF01_AE and CRF02_AG. Clinical, demographic, and viral genetic sequence data were collected for each virus. The neutralization phenotype of each virus was assessed with a panel of seven clade-specific HIV-1+ plasma pools. Viruses were rank ordered according to average neutralization sensitivity, and k-means clustering was utilized to identify four subgroups of viruses with neutralization phenotypes ranging from highly sensitive to resistant. Together, these results will improve the ability to rigorously evaluate antibody-based HIV-1 vaccines and will facilitate the interpretation of assay results to identify immunogens with improved capacity to elicit broadly cross-reactive NAbs.  相似文献   
15.
Mammalian ferritins are predominantly heteropolymeric species consisting of 2 structurally similar, but functionally and genetically distinct subunit types, called H (Heavy) and L (Light). The two subunits co-assemble in different H and L ratios to form 24-mer shell-like protein nanocages where thousands of iron atoms can be mineralized inside a hollow cavity. Here, we use differential scanning calorimetry (DSC) to study ferritin stability and understand how various combinations of H and L subunits confer aspects of protein structure–function relationships. Using a recently engineered plasmid design that enables the synthesis of complex ferritin nanostructures with specific H to L subunit ratios, we show that homopolymer L and heteropolymer L-rich ferritins have a remarkable hyperthermostability (Tm = 115 ± 1°C) compared to their H-ferritin homologues (Tm = 93 ± 1°C). Our data reveal a significant linear correlation between protein thermal stability and the number of L subunits present on the ferritin shell. A strong and unexpected iron-induced protein thermal destabilization effect (ΔTm up to 20°C) is observed. To our knowledge, this is the first report of recombinant human homo- and hetero-polymer ferritins that exhibit surprisingly high dissociation temperatures, the highest among all known ferritin species, including many known hyperthermophilic proteins and enzymes. This extreme thermostability of our L and L-rich ferritins may have great potential for biotechnological applications.  相似文献   
16.
17.
The evolution of envelope mutations by replicating primate immunodeficiency viruses allows these viruses to escape from the immune pressure mediated by neutralizing antibodies. Vaccine-induced anti-envelope antibody responses may accelerate and/or alter the specificity of the antibodies, thus shaping the evolution of envelope mutations in the replicating virus. To explore this possibility, we studied the neutralizing antibody response and the envelope sequences in rhesus monkeys vaccinated with either gag-pol-nef immunogens or gag-pol-nef immunogens in combination with env and then infected with simian immunodeficiency virus (SIV). Using a pseudovirion neutralization assay, we demonstrate that envelope vaccination primed for an accelerated neutralizing antibody response following virus challenge. To monitor viral envelope evolution in these two cohorts of monkeys, full-length envelopes from plasma virus isolated at weeks 37 and 62 postchallenge were sequenced by single genome amplification to identify sites of envelope mutations. We show that env vaccination was associated with a change in the pattern of envelope mutations. Prevalent mutations in sequences from gag-pol-nef vaccinees included deletions in both variable regions 1 and 4 (V1 and V4), whereas deletions in the env vaccinees occurred only in V1. These data show that env vaccination altered the focus of the antibody-mediated selection pressure on the evolution of envelope following SIV challenge.Immune containment of human immunodeficiency virus (HIV-1) is complicated by the continuous genetic evolution of the virus. The evolution of the HIV-1 envelope is shaped, in part, by selective pressure of neutralizing antibodies (6, 12, 27, 34-36, 40). Changes in envelope sequence and glycosylation patterns following infection can allow the virus to escape neutralization. If the rate and extent of envelope sequence evolution following infection can be decreased, immune containment of HIV-1 may be improved.One possible strategy for modifying envelope evolution is vaccination prior to infection. A vaccine-elicited memory immune response could focus and potentiate the humoral immune response that develops following infection. The possible consequence of vaccination has not been assessed, however, because of the limited number of human volunteers who have received highly immunogenic envelope immunogens and subsequently became infected with HIV-1.Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides a powerful model to study the effect of vaccination on envelope evolution. Like HIV-1, SIV employs both the CD4 molecule and the chemokine receptor CCR5 to enter a target cell and cause an AIDS-like disease in macaques (16, 22). Both SIV and HIV-1 envelopes are heavily glycosylated, with approximately 50% of their mass derived from carbohydrates (14, 21). SIV and HIV-1 envelopes share approximately 40% amino acid homology (10, 11) and have overlapping variable and constant regions, although the variable region 3 (V3) of HIV-1 envelope does not align with the homologous region of SIV envelope (7). Following SIV infection in rhesus monkeys, SIV envelope evolves most rapidly in variable regions 1 and 4 (V1 and V4, respectively), leading to nucleotide additions, deletions, and/or mutations that can potentially translate to changes in glycosylation (7, 9, 13, 15, 19, 29, 30).Studies done to characterize SIV neutralization suggest that it occurs through mechanisms similar to those seen in HIV-1 neutralization. Amino acid mutations in the envelope of both viruses contribute to the evasion of antibody binding directly by changing recognition sequences and/or envelope conformation. In addition, the glycosylation of envelope serves as a further obstacle to antibody recognition (20, 33, 40). Considerable effort has been devoted to defining neutralizing epitopes of the HIV and SIV envelopes. The known neutralizing human monoclonal antibodies elicited during natural infection are directed against HIV-1 envelope target sites on both gp120 and gp41, including the V3 region, the CD4 binding site, oligomannose residues of gp120, and gp41 (17, 31). The neutralizing epitope profile of SIV envelope includes the CD4 binding site and gp41 but not the V3 region. There is conflicting evidence as to whether V1, V2, and/or V4 of SIV are targets for antibody neutralization (15, 18, 19). The present study addresses whether vaccine-induced immune responses accelerate the generation of autologous neutralizing antibodies following SIV challenge in rhesus monkeys and how this humoral immune response can potentially shape viral sequence evolution.  相似文献   
18.
The non-essential amino acid L-glutamine (Gln) displays potent anti-inflammatory activity by deactivating p38 mitogen activating protein kinase and cytosolic phospholipase A2 via induction of MAPK phosphatase-1 (MKP-1) in an extracellular signal-regulated kinase (ERK)-dependent way. In this study, the mechanism of Gln-mediated ERK-dependency in MKP-1 induction was investigated. Gln increased ERK phosphorylation and activity, and phosphorylations of Ras, c-Raf, and MEK, located in the upstream pathway of ERK, in response to lipopolysaccharidein vitro and in vivo. Gln-induced dose-dependent transient increases in intracellular calcium ([Ca2+]i) in MHS macrophage cells. Ionomycin increased [Ca2+]i and activation of Ras → ERK pathway, and MKP-1 induction, in the presence, but not in the absence, of LPS. The Gln-induced pathways involving Ca2+→ MKP-1 induction were abrogated by a calcium blocker. Besides Gln, other amino acids including L-phenylalanine and l-cysteine (Cys) also induced Ca2+ response, activation of Ras → ERK, and MKP-1 induction, albeit to a lesser degree. Gln and Cys were comparable in suppression against 2, 4-dinitrofluorobenzene-induced contact dermatitis. Gln-mediated, but not Cys-mediated, suppression was abolished by MKP-1 small interfering RNA. These data indicate that Gln induces MKP-1 by activating Ca2+→ ERK pathway, which plays a key role in suppression of inflammatory reactions.  相似文献   
19.
The competition for resources among cells, individuals or species is a fundamental characteristic of evolution. Biological all-pay auctions have been used to model situations where multiple individuals compete for a single resource. However, in many situations multiple resources with various values exist and single reward auctions are not applicable. We generalize the model to multiple rewards and study the evolution of strategies. In biological all-pay auctions the bid of an individual corresponds to its strategy and is equivalent to its payment in the auction. The decreasingly ordered rewards are distributed according to the decreasingly ordered bids of the participating individuals. The reproductive success of an individual is proportional to its fitness given by the sum of the rewards won minus its payments. Hence, successful bidding strategies spread in the population. We find that the results for the multiple reward case are very different from the single reward case. While the mixed strategy equilibrium in the single reward case with more than two players consists of mostly low-bidding individuals, we show that the equilibrium can convert to many high-bidding individuals and a few low-bidding individuals in the multiple reward case. Some reward values lead to a specialization among the individuals where one subpopulation competes for the rewards and the other subpopulation largely avoids costly competitions. Whether the mixed strategy equilibrium is an evolutionarily stable strategy (ESS) depends on the specific values of the rewards.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号