首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   873篇
  免费   64篇
  937篇
  2023年   7篇
  2022年   13篇
  2021年   16篇
  2020年   8篇
  2019年   12篇
  2018年   16篇
  2017年   16篇
  2016年   30篇
  2015年   51篇
  2014年   36篇
  2013年   50篇
  2012年   61篇
  2011年   58篇
  2010年   27篇
  2009年   34篇
  2008年   57篇
  2007年   66篇
  2006年   54篇
  2005年   61篇
  2004年   49篇
  2003年   39篇
  2002年   33篇
  2001年   22篇
  2000年   15篇
  1999年   22篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   7篇
  1992年   6篇
  1991年   11篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1978年   2篇
  1977年   2篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1970年   3篇
  1968年   1篇
排序方式: 共有937条查询结果,搜索用时 15 毫秒
41.
We isolated 11 independent temperature-sensitive (ts) mutants of Schizosaccharomyces pombe RanGAP, SpRna1 that have several amino acid changes in the conserved domains of RanGAP. Resulting Sprna1ts showed a strong defect in mitotic chromosome segregation, but did not in nucleocytoplasmic transport and microtubule formation. In addition to Sprna1+ and Spksp1+, the clr4+ (histone H3-K9 methyltransferase), the S. pombe gene, SPAC25A8.01c, designated snf2SR+ (a member of the chromatin remodeling factors, Snf2 family with DNA-dependent ATPase activity), but not the spi1+ (S. pombe Ran homolog), rescued a lethality of Sprna1ts. Both Clr4 and Snf2 were reported to be involved in heterochromatin formation essential for building the centromeres. Consistently, Sprna1ts was defective in gene-silencing at the centromeres. But a silencing at the telomere, another heterochromatic region, was normal in all of Sprna1ts strains, indicating SpRna1 in general did not function for a heterochromatin formation. snf2SR+ rescued a centromeric silencing defect and Deltaclr4+ was synthetic lethal with Sprna1ts. Taken together, SpRna1 was suggested to function for constructing the centromeres, by cooperating with Clr4 and Snf2SR. Loss of SpRna1 activity, therefore, caused chromosome missegregation.  相似文献   
42.
Chlorophyllase (CLH) is a common plant enzyme that catalyzes the hydrolysis of chlorophyll to form chlorophyllide, a more hydrophilic derivative. For more than a century, the biological role of CLH has been controversial, although this enzyme has been often considered to catalyze chlorophyll catabolism during stress-induced chlorophyll breakdown. In this study, we found that the absence of CLH does not affect chlorophyll breakdown in intact leaf tissue in the absence or the presence of methyl-jasmonate, which is known to enhance stress-induced chlorophyll breakdown. Fractionation of cellular membranes shows that Arabidopsis (Arabidopsis thaliana) CLH is located in the endoplasmic reticulum and the tonoplast of intact plant cells. These results indicate that CLH is not involved in endogenous chlorophyll catabolism. Instead, we found that CLH promotes chlorophyllide formation upon disruption of leaf cells, or when it is artificially mistargeted to the chloroplast. These results indicate that CLH is responsible for chlorophyllide formation after the collapse of cells, which led us to hypothesize that chlorophyllide formation might be a process of defense against chewing herbivores. We found that Arabidopsis leaves with genetically enhanced CLH activity exhibit toxicity when fed to Spodoptera litura larvae, an insect herbivore. In addition, purified chlorophyllide partially suppresses the growth of the larvae. Taken together, these results support the presence of a unique binary defense system against insect herbivores involving chlorophyll and CLH. Potential mechanisms of chlorophyllide action for defense are discussed.Plants have evolved both constitutive and inducible defense mechanisms against herbivores. Constitutive mechanisms include structural defenses (e.g. spines and trichomes) and specific chemical compounds. Constitutive defense mechanisms provide immediate protection against herbivore attacks, although they represent an energy investment by the plant regardless of whether herbivory occurs or not (Mauricio, 1998; Bekaert et al., 2012). By contrast, inducible defense mechanisms do not require an up-front energy cost, although such mechanisms may not be as immediate as constitutive ones when herbivore feeding occurs (Windram et al., 2012). Accordingly, plants exhibit both constitutive and inducible defense mechanisms against herbivory to balance the speed and cost of response. In this regard, it is plausible that the recruitment of abundant primary metabolites for defensive purposes might represent a substantial benefit to plants, providing both a swift and economical defense function.Toxic chemical compounds form an essential part in both constitutive and inducible defense mechanisms. However, these compounds are potentially a double-edged sword for plants, in a sense that they might pose toxic effects for both plants and herbivores. Plants have evolved an intricate binary system that prevents autointoxication by their own chemical compounds. Specifically, a toxic substance is stored in its inactive form and is spatially isolated from specific activating enzymes. These enzymes activate the substance when cells are disrupted by chewing herbivores (Saunders and Conn, 1978; Thayer and Conn, 1981; Morant et al., 2008). One of the most extensively studied binary defense systems is the glucosinolate/myrosinase system, in which the glucosinolate substrate and their hydrolyzing enzyme, a thioglucosidase myrosinase, are compartmentalized. Upon tissue damage, both the substrate and the enzyme come into contact to produce unstable aglycones, and various toxic compounds are then spontaneously produced (Bones and Rossiter, 1996). Another well-known example of the binary system is comprised of cyanogenic glucosides and β-glucosidase (Vetter, 2000; Mithöfer and Boland, 2012). In this system, nontoxic cyanogenic glycoside compounds are stored in the vacuole, whereas, the related glycosidase is localized in the cytoplasm. Upon cell destruction by chewing herbivores, the cyanogenic glycosides are hydrolyzed by glycosidase to yield unstable cyanohydrin that is either spontaneously or enzymatically converted into toxic hydrogen cyanide and a ketone or an aldehyde. Because the binary defense system is efficient and effective, a use of ubiquitous compounds for such systems would provide further benefits for plants.Tetrapyrrole compounds, in particular heme and chlorophyll, are abundant in plant cells. Despite their significant roles in various biological processes including photosynthesis and respiration, many tetrapyrroles are highly toxic to plant and animal cells, if present in excess amounts (Kruse et al., 1995; Meskauskiene et al., 2001). Their photodynamic properties can cause the generation of reactive oxygen species upon illumination, resulting in cell injury or direct cell death. For example, Tapper et al. (1975) showed that a tetrapyrrole compound (pheophorbide a), which is readily converted from dietary chlorophyll through the loss of magnesium and phytol, reduces the growth and survival rates of young albino rats through its photodynamic property. More recently, Jonker et al. (2002) demonstrated that dietary-derived pheophorbide a causes severe damages on the skin of mutant mice that lack a transporter to excrete pheophorbide a from cells. These studies indicate that incorporation of an excessive amount of tetrapyrrole compounds can induce photosensitization in animals. Previous studies also showed that tetrapyrroles have illumination-independent deleterious effects on insects. For example, pheophorbide a affected the assimilation of the plant sterols to synthesize developmental hormones of insects by inhibiting the activity of a key enzyme, cholesterol acyltransferase (Song et al., 2002). Moreover, some tetrapyrroles, including pheophorbide a, have been suggested to induce illumination-independent cell death in plants as well by an unknown mechanism (Hirashima et al., 2009). It is proposed that organisms use the toxicity of tetrapyrroles for their defense systems. The larvae of tortoise beetle (Chelymorpha alternans) even utilize pheophorbide a as a powerful deterrent in the fecal shield to protect themselves from their predators (Vencl et al., 2009). Kariola et al. (2005) suggested that a chlorophyll derivative, chlorophyllide, is involved in the defense against fungi, based on their observations that down-regulation of a chlorophyll-hydrolyzing enzyme, chlorophyllase (CLH), results in increased susceptibility of Arabidopsis (Arabidopsis thaliana) plants to the necrotrophic fungus Alternaria brassicicola.In this study, we examined the possibility that plants use tetrapyrroles for defense against herbivores by analyzing CLH, a well-known hydrolase common in plants. Chlorophyll consists of a tetrapyrrolic macrocycle and a hydrophobic phytol side chain (Fig. 1). Phytol hydrolysis results in the formation of chlorophyllide (Fig. 1), a less hydrophobic chlorophyll derivative, which has photochemical properties similar to chlorophyll. Two different plant enzymes are known to catalyze the cleavage of phytol, pheophytinase (PPH) and CLH. PPH is a chloroplast-located enzyme that specifically catalyzes the removal of phytol from Mg-free chlorophyll catabolites (Schelbert et al., 2009). This enzyme was only recently discovered and has been shown to be responsible for chlorophyll degradation during leaf senescence. By contrast, CLH has a broader substrate specificity and removes the side chain from chlorophyll or other chlorophyll derivatives (McFeeters et al., 1971). CLH activity was first reported in leaf extracts in 1913 (Willstätter and Stoll, 1913), but despite a century of research, in vivo function and intracellular localization of this enzyme remained controversial. Some reports have indicated CLH to localize to chloroplasts (Azoulay Shemer et al., 2008; Azoulay-Shemer et al., 2011), while Schenk et al. (2007), by examining the intracellular localization of transiently expressed CLH-GFP fusions, proposed Arabidopsis CLH to localize outside the chloroplast. Schenk et al. (2007) also reported that the lack of CLH does not affect chlorophyll degradation during leaf senescence. However, it remains possible that CLH is specifically involved in chlorophyll degradation in response to stresses that activate jasmonate signaling, such as wounding or pathogen attack. This hypothesis is based on the observation that the expression of a CLH gene was highest when methyl-jasmonate (MeJA; a derivative of jasmonic acid) was applied to Arabidopsis plants (Tsuchiya et al., 1999).Open in a separate windowFigure 1.Early steps of proposed chlorophyll breakdown pathways. MCS, Magnesium-dechelating substance.Here, we report that CLH is not involved in endogenous chlorophyll breakdown even when leaf senescence was promoted by jasmonate signaling. CLH is shown to localize to the chlorophyll-free endoplasmic reticulum (ER) and the tonoplast of intact plant cells. We found that CLH promotes the conversion of chlorophyll into chlorophyllide when leaf cells are disrupted or when CLH is genetically mislocalized to chloroplasts. To examine the possibility that plants use chlorophyll and CLH to form a binary defense system against herbivores, a generalist herbivore, Spodoptera litura larvae, was employed to investigate the toxicity of Arabidopsis leaves with genetically enhanced CLH activity and purified chlorophyllide. The results support our hypothesis, indicating plants to deploy an abundant photosynthetic pigment for defense against herbivores, which would be economic and provide adaptation benefits to plants. A potential mechanism of chlorophyllide action as part of the plant defense system is discussed based on the examination of chlorophyllide binding to the insect gut.  相似文献   
43.
44.
To elucidate the physiological role of canine serum ferritin, we measured clearance rates of biotinylated ferritins in beagle. Biotinylated canine tissue ferritins were cleared rapidly from circulation. The clearance time (T1/2) of liver ferritin (H/L subunit ratio=0.43) was 6.8 to 11.8 min, and that of heart ferritin (H/L=3.69) was 9.3 to 25.0 min. T1/2 of biotinylated canine liver ferritin was independent of iron content, whereas canine heart apoferritin (T1/2=31.2 and 32.7 min) was more slowly removed from circulation than the holoferritin. On the other hand, biotinylated recombinant bovine H-chain ferritin homopolymer show a much slower rate of removal (T1/2=153.8 and 155.0 min) compared with the L-chain ferritin homopolymer (T1/2=26.4 and 31.3 min). The rapid clearance of canine tissue ferritin suggests that serum ferritin is an iron transporter in canines.  相似文献   
45.
The induced synthesis of bioactive prostanoids downstream of cyclooxygenase-2 (COX-2) and prostaglandin H2 (PGH2) exerts a critical event in colorectal carcinogenesis. Here we demonstrate that APCMin/+ mice with genetic deletion of microsomal prostaglandin E synthase-1 (mPGES-1), which catalyses the terminal conversion of PGH2 into PGE2, surprisingly develop more and generally larger intestinal tumors than do mPGES-1 wild type littermates (mean number of tumors/intestine 80 vs. 38, p < 0.0005, mean tumor diameter 1.64 vs. 1.12 mm, p < 0.0005). No deviation regarding the expression of other PGE2 related enzymes (COX-1, COX-2, mPGES-2, cPGES, and 15-PGDH) or receptors (EP1-4) was obvious among the mPGES-1 deficient mice. PGE2 levels were suppressed in tumors of mPGES-1 deficient animals, but the concentrations of other PGH2 derived prostanoids were generally enhanced, being most prominent for TxA2 and PGD2. Thus, we hypothesise that a redirected synthesis towards other lipid mediators might (over)compensate for loss of mPGES-1/PGE2 during intestinal tumorigenesis. Nevertheless, our results question the suitability for mPGES-1 targeting therapy in the treatment or prevention of colorectal cancer.  相似文献   
46.
In this study, we report on an in situ monitoring system of living cultured cells using infrared absorption spectroscopy in the geometry of multiple internal reflections (MIR-IRAS). In order to observe living cultured cells, the temperature in the sample chamber of a FT-IR spectrometer was maintained at 37 °C and a humidified gas mixture containing 5% CO2 was introduced into the sample chamber. Human breast cell line MCF-7 cultured on Si MIR prisms were placed in the sample chamber and infrared spectra of MCF-7 cells were collected for 5 h. It was found that the adhesion and metabolism of MCF-7 cells could be monitored by the absorption intensity of amide-II protein band (1,545 cm−1) and also by the absorption intensities of CH x bands (2,700–3,100 cm−1). These results suggest that our system is useful for a nondestructive and non-label monitoring of cell viability. Our method based on infrared absorption spectroscopy has a potential for bioscreening application.  相似文献   
47.
The changes in chlorophyll-protein complexes (CPs) in cucumbercotyledons during illumination and subsequent dark incubationwere studied by SDS-polyacrylamide gel electrophoresis. Whenetiolated cucumber seedlings were illuminated, chlorophyll wassynthesized and CPs were formed. In the early phase of greening(6 h of illumination), light-harvesting chlorophyll a/b-proteincomplex (LHCP) was the main GP. As the greening proceeded, P700chlorophyll a-protein complex (CP1) accumulated. When 6-h illuminatedseedlings were transferred to darkness, CP1 accumulated concomitantlywith a decrease in LHCP without new chlorophyll synthesis. Thechanges in the amounts of CPs in the dark became smaller withthe progress of greening and were not observed after 72 h ofillumination. These changes were confirmed by examining thechlorophyll/P700 ratio and the low temperature absorption spectrumof cotyledons. These results suggest that in the early phaseof greening, CPs were unstable and their chlorophyll moleculeseasily exchanged with those of other kinds of CPs. (Received October 14, 1982; Accepted December 1, 1982)  相似文献   
48.
Cultured endothelium derived from three fractions of human cerebral microvessels was used to characterize dopamine (DA) receptors linked to adenylate cyclase activity. DA or D1 agonist, (+/-)-SKF-82958 hydrobromide, stimulated endothelial cyclic AMP formation in a dose-dependent manner. The selective D1 antagonist, (+/-)SCH-23390, inhibited in a dose-dependent manner the production of cyclic AMP induced by DA. The affinity for the D1 receptor appeared to be greater in endothelium derived from large and small microvessels than from capillaries. Cholera toxin ADP-ribosylation of Gs proteins abolished the DA stimulatory effect on endothelial adenylate cyclase, whereas pertussis toxin ADP-ribosylation enhanced the DA-inducible formation, indicating the presence of both D1 and D2 receptors. Agonists of alpha 1-adrenergic receptors (phenylephrine, 6-fluoronorepinephrine) or serotonin (5-HT), which stimulated the production of cyclic AMP, had no additive effect on DA-stimulated cyclic AMP formation. Incubation of these agents with DA produced the same or lower levels of cyclic AMP as compared to that formed by DA alone. The effect of alpha 1-adrenergic agonists or 5-HT on DA production of cyclic AMP was partially prevented by the D2 antagonist, S(-)-sulpiride, or ketanserin (5-HT2 greater than alpha 1 greater than H1 antagonists), respectively. These findings represent the first demonstration of D1- (stimulatory) and D2- (inhibitory) receptors linked to adenylate cyclase in microvascular endothelium derived from human brain. The data also indicate that dopaminergic receptors can interact with either alpha 1-adrenergic or or 5-HT receptors in endothelium on the adenylate cyclase level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
49.
Mouse CD1d-restricted Valpha14 NKT cells are a unique subset of lymphocytes, which play important roles in immune regulation, tumor surveillance and host defense against pathogens. DOCK2, a mammalian homolog of Caenorhabditis elegans CED-5 and Drosophila melanogaster myoblast city, is critical for lymphocyte migration and regulates T cell responsiveness through immunological synapse formation, yet its role in Valpha14 NKT cells remains unknown. We found that DOCK2 deficiency causes marked reduction of Valpha14 NKT cells in the thymus, liver, and spleen. When alpha-galactosylceramide (alpha-GalCer), a ligand for Valpha14 NKT cells, was administrated, cytokine production was scarcely detected in DOCK2-deficient mice, suggesting that DOCK2 deficiency primarily affects generation of Valpha14 NKT cells. Supporting this idea, staining with CD1d/alpha-GalCer tetramers revealed that CD44- NK1.1- Valpha14 NKT cell precursors are severely reduced in the thymuses of DOCK2-deficient mice. In addition, studies using bone marrow chimeras indicated that development of Valpha14 NKT cells requires DOCK2 expression in T cell precursors, but not in APCs. These results indicate that DOCK2 is required for positive selection of Valpha14 NKT cells in a cell-autonomous manner, thereby suggesting that avidity-based selection also governs development of this unique subset of lymphocytes in the thymus.  相似文献   
50.
Sclerosteosis is a progressive sclerosing bone dysplasia. Sclerostin (the SOST gene) was originally identified as the sclerosteosis-causing gene. However, the physiological role of sclerostin remains to be elucidated. Sclerostin was intensely expressed in developing bones of mouse embryos. Punctuated expression of sclerostin was localized on the surfaces of both intramembranously forming skull bones and endochondrally forming long bones. Sclerostin-positive cells were identified as osteoclasts. Recombinant sclerostin protein produced in cultured cells was efficiently secreted as a monomer. We examined effects of sclerostin on the activity of BMP2, BMP4, BMP6, and BMP7 for mouse preosteoblastic MC3T3-E1 cells. Sclerostin inhibited the BMP6 and BMP7 activity but not the BMP2 and BMP4 activity. Sclerostin bound to BMP6 and BMP7 with high affinity but bound to BMP2 and BMP4 with lower affinity. In conclusion, sclerostin is a novel secreted osteoclast-derived BMP antagonist with unique ligand specificity. We suggest that sclerostin negatively regulates the formation of bone by repressing the differentiation and/or function of osteoblasts induced by BMPs. Since sclerostin expression is confined to the bone-resorbing osteoclast, it provides a mechanism whereby bone apposition is inhibited in the vicinity of resorption. Our findings indicate that sclerostin plays an important role in bone remodeling and links bone resorption and bone apposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号