首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   579篇
  免费   43篇
  2023年   7篇
  2022年   12篇
  2021年   14篇
  2020年   8篇
  2019年   11篇
  2018年   12篇
  2017年   14篇
  2016年   24篇
  2015年   41篇
  2014年   28篇
  2013年   41篇
  2012年   47篇
  2011年   44篇
  2010年   21篇
  2009年   27篇
  2008年   41篇
  2007年   46篇
  2006年   36篇
  2005年   38篇
  2004年   37篇
  2003年   28篇
  2002年   16篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
排序方式: 共有622条查询结果,搜索用时 281 毫秒
121.
Lack of magnesium suppresses cell growth, but the molecular mechanism is not examined in detail. We examined the effect of extracellular magnesium deficiency on cell cycle progression and the expression of cell cycle regulators in renal epithelial NRK-52E cells. In synchronized cells caused by serum-starved method, over 80% cells were distributed in G1 phase. Cell proliferation and percentage of the cells in S phase in the presence of MgCl(2) were higher than those in the absence of MgCl(2) , suggesting that magnesium is involved in the cell cycle progression from G1 to S phase. After serum addition, the expression levels of p21(Cip1) and p27(Kip1) in the absence of MgCl(2) were higher than those in the presence of MgCl(2) . The exogenous expression of p21(Cip1) or p27(Kip1) increased the percentage in G1 phase, whereas it decreased that in S phase. The mRNA levels and promoter activities of p21(Cip1) and p27(Kip1) in the absence of MgCl(2) were higher than those in the presence of MgCl(2) . The phosphorylated p53 (p-p53) level was decreased by MgCl(2) addition. Pifithrin-α, a p53 inhibitor, decreased the p-p53, p21(Cip1) and p27(Kip1) levels, and the percentage in G1 phase in the absence of MgCl(2) . Rotenone, a mitochondrial respiratory inhibitor, decreased ATP content and increased the p-p53 level in the presence of MgCl(2) . Together, lack of magnesium may increase p21(Cip1) and p27(Kip1) levels mediated by the decrease in ATP content and the activation of p53, resulting in the suppression of cell cycle progression from G1 to S phase in NRK-52E cells.  相似文献   
122.
A practical asymmetric synthesis of both enantiomers of the immunosuppressive FTY720-phosphate (2) was accomplished, and the enantiomers were pharmacologically evaluated. Several lipases showed considerable activity and enantioselectivity for O-acylation of N-acetyl FTY720 (3) or N-benzyloxycarbonyl FTY720 (7) in combination with vinyl acetate or benzyl vinyl carbonate as the acyl donors. The synthesis using the lipase-catalyzed acylation as the key step produced the enantiomerically pure (>99.5% ee) enantiomers of 2 in multigram quantities. (S)-Isomer of 2 had more potent binding affinities to S1P(1,3,4,5) and inhibitory activity on lymphocyte migration toward S1P than (R)-2, suggesting that (S)-isomer of 2 is responsible for the immunosuppressive activity after administration of 1. Severe bradycardia was observed in anesthetized rats when (S)-2 was administered intravenously, while (R)-2 had no clear effect on heart rate up to 0.3 mg/kg.  相似文献   
123.
Oxidation of 5-acetamido-4,8-anhydro-1,2,3,5-tetradeoxy-D-glycero-D-ido-non-1-enitol [3-C-(2-amino-2-deoxy-beta-D-glucopyranosyl)-1-propene] was studied to search for preparative routes to aminodeoxy didehydro nonulosonic acid derivatives. Since only moderate chiral induction was observed with osmium tetroxide dihydroxylation as well as with peracid epoxidation, the catalytic asymmetric dihydroxylation conditions were applied to give the stereocontrolled formation of 1,2-propanediol derivatives. The structures of these diastereoisomeric 1,2-propanediol derivatives were determined by X-ray crystallographic analyses. The formation of diastereoisomeric 1,2-propanediols also varied with the nature of 2-substituent on the aminodoexy glycosyl moiety. Thus 5-acetamido-4,8-anhydro-3,5-dideoxy-D-erythro-L-ido-nonitol [(2S)-3-C-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-1,2-propanediol] was obtained predominantly up to 70% from 3-C-(2-acetamido-2-deoxyglycosyl)-1-propene by the use of ADmixbeta reagent. The (2S)-propanediol derivative was transformed in a five-step reaction sequence to 2,3-didehydro-2,7-dideoxy-N-acetylneuraminic acid.  相似文献   
124.
The mouse chromosome 7C, orthologous to the human 15q11–q13 has an imprinted domain, where most of the genes are expressed only from the paternal allele. The imprinted domain contains paternally expressed genes, Snurf/Snrpn, Ndn, Magel2, Mkrn3, and Frat3, C/D-box small nucleolar RNAs (snoRNAs), and the maternally expressed gene, Ube3a. Imprinted expression in this large (approximately 3–4 Mb) domain is coordinated by a bipartite cis-acting imprinting center (IC), located upstream of the Snurf/Snrpn gene. The molecular mechanism how IC regulates gene expression of the whole domain remains partially understood. Here we analyzed the relationship between imprinted gene expression and DNA methylation in the mouse chromosome 7C using DNA methyltransferase 1 (DNMT1)-null mutant embryos carrying Dnmt1ps alleles, which show global loss of DNA methylation and embryonic lethality. In the DNMT1-null embryos at embryonic day 9.5, the paternally expressed genes were biallelically expressed. Bisulfite DNA methylation analysis revealed loss of methylation on the maternal allele in the promoter regions of the genes. These results demonstrate that DNMT1 is necessary for monoallelic expression of the imprinted genes in the chromosome 7C domain, suggesting that DNA methylation in the secondary differentially methylated regions (DMRs), which are acquired during development serves primarily to control the imprinted expression from the maternal allele in the mouse chromosome 7C.  相似文献   
125.
126.
Fibroblast growth factor (Fgf) signaling plays crucial roles in various developmental processes including those in the brain. We examined the role of Fgf16 in the formation of the zebrafish brain. The knockdown of fgf16 decreased cell proliferation in the forebrain and midbrain. fgf16 was also essential for development of the ventral telencephalon and diencephalon, whereas fgf16 was not required for dorsoventral patterning in the midbrain. fgf16 was additionally required for the specification and differentiation of γ–aminobutyric acid (GABA)ergic interneurons and oligodendrocytes, but not for those of glutamatergic neurons in the forebrain. Cross talk between Fgf and Hedgehog (Hh) signaling was critical for the specification of GABAergic interneurons and oligodendrocytes. The expression of fgf16 in the forebrain was down-regulated by the inhibition of Hh and Fgf19 signaling, but not by that of Fgf3/Fgf8 signaling. The fgf16 morphant phenotype was similar to that of the fgf19 morphant and embryos blocked Hh signaling. The results of the present study indicate that Fgf16 signaling, which is regulated by the downstream pathways of Hh-Fgf19 in the forebrain, is involved in forebrain development.  相似文献   
127.
Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA) A receptor (GABA(A)R) system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(A)R agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis) at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN). Formation of glutathione S-transferase placental form positive (GST-P+) foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2′-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P+ foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21Waf1/Cip1, p53 and Bax mRNA expression. Interestingly, expression of the GABA(A)R alpha 1 subunit was observed in GST-P+ foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P+ foci by activating GABA(A)R-mediated signaling.  相似文献   
128.
The chaperonin GroEL is an essential chaperone that assists in protein folding with the aid of GroES and ATP. GroEL forms a double-ring structure, and both rings can bind GroES in the presence of ATP. Recent progress on the GroEL mechanism has revealed the importance of a symmetric 1:2 GroEL:GroES2 complex (the “football”-shaped complex) as a critical intermediate during the functional GroEL cycle. We determined the crystal structure of the football GroEL:GroES2-ATP14 complex from Escherichia coli at 3.8 Å, using a GroEL mutant that is extremely defective in ATP hydrolysis. The overall structure of the football complex resembled the GroES-bound GroEL ring of the asymmetric 1:1 GroEL:GroES complex (the “bullet” complex). However, the two GroES-bound GroEL rings form a modified interface by an ~ 7° rotation about the 7-fold axis. As a result, the inter-ring contacts between the two GroEL rings in the football complex differed from those in the bullet complex. The differences provide a structural basis for the apparently impaired inter-ring negative cooperativity observed in several biochemical analyses.  相似文献   
129.
The cell surface engineering system, in which functional proteins are genetically displayed on microbial cell surfaces, has recently become a powerful tool for applied biotechnology. Here, we report on the surfactant modification of surface-displayed lipase to improve its performance for enzymatic synthesis reactions. The lipase activities of the surfactant-modified yeast displaying Rhizopus oryzae lipase (ROL) were evaluated in both aqueous and nonaqueous systems. Despite the similar lipase activities of control and surfactant-modified cells in aqueous media, the treatment with nonionic surfactants increased the specific lipase activity of the ROL-displaying yeast in n-hexane. In particular, the Tween 20-modified cells increased the cell surface hydrophobicity significantly among a series of Tween surfactants tested, resulting in 8–30 times higher specific activity in organic solvents with relatively high log P values. The developed cells were successfully used for the enzymatic synthesis of phospholipids and fatty acid methyl esters in n-hexane, whereas the nontreated cells produced a significantly low yield. Our results thus indicate that surfactant modification of the cell surface can enhance the potential of the surface-displayed lipase for bioconversion.  相似文献   
130.
A practical enzymatic synthesis of a doubly chiral key compound, (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone, starting from the readily available 2,6,6-trimethyl-2-cyclohexen-1,4-dione is described. Chirality is first introduced at the C-6 position by a stereoselective enzymatic hydrogenation of the double bond using old yellow enzyme 2 of Saccharomyces cerevisiae, expressed in Escherichia coli, as a biocatalyst. Thereafter, the carbonyl group at the C-4 position is reduced selectively and stereospecifically by levodione reductase of Corynebacterium aquaticum M-13, expressed in E. coli, to the corresponding alcohol. Commercially available glucose dehydrogenase was also used for cofactor regeneration in both steps. Using this two-step enzymatic asymmetric reduction system, 9.5 mg of (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone/ml was produced almost stoichiometrically, with 94% enantiomeric excess in the presence of glucose, NAD+, and glucose dehydrogenase. To our knowledge, this is the first report of the application of S. cerevisiae old yellow enzyme for the production of a useful compound.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号