首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   757篇
  免费   59篇
  2023年   7篇
  2022年   12篇
  2021年   15篇
  2020年   8篇
  2019年   11篇
  2018年   13篇
  2017年   15篇
  2016年   25篇
  2015年   43篇
  2014年   31篇
  2013年   43篇
  2012年   56篇
  2011年   52篇
  2010年   27篇
  2009年   35篇
  2008年   51篇
  2007年   57篇
  2006年   42篇
  2005年   46篇
  2004年   46篇
  2003年   31篇
  2002年   26篇
  2001年   11篇
  2000年   14篇
  1999年   10篇
  1998年   6篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1993年   8篇
  1992年   6篇
  1991年   9篇
  1990年   7篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1979年   2篇
  1978年   4篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1969年   1篇
  1937年   1篇
  1932年   1篇
排序方式: 共有816条查询结果,搜索用时 31 毫秒
31.
Thromboxane A2 receptor (TP) mediates bronchial smooth muscle cell (BSMC) contraction, airway hyperresponsiveness, and airway inflammation in patients with asthma. In the present study, a pathogenic role of TP activation in airway remodeling was examined using primary cultures of human BSMC. A TP agonist, I-BOP, concentration-dependently enhanced not only bromodeoxyuridine (BrdU) uptake but also cell proliferation of BSMC. A TP-selective antagonist, AA-2414, blocked the effects of I-BOP on both BrdU uptake and cell proliferation. I-BOP-induced BrdU uptake was significantly blocked by two non-selective tyrosine kinase inhibitors, genistein and herbimycin A, or a Src family tyrosine kinase inhibitor, PP2, but not by an inhibitor of epidermal growth factor (EGF) receptor-associated tyrosine kinase, AG1478. In conclusion, TP receptor activation causes DNA synthesis and cell proliferation of human BSMC by activating tyrosine kinases including Src, but not by EGF receptor transactivation.  相似文献   
32.
We isolated 11 independent temperature-sensitive (ts) mutants of Schizosaccharomyces pombe RanGAP, SpRna1 that have several amino acid changes in the conserved domains of RanGAP. Resulting Sprna1ts showed a strong defect in mitotic chromosome segregation, but did not in nucleocytoplasmic transport and microtubule formation. In addition to Sprna1+ and Spksp1+, the clr4+ (histone H3-K9 methyltransferase), the S. pombe gene, SPAC25A8.01c, designated snf2SR+ (a member of the chromatin remodeling factors, Snf2 family with DNA-dependent ATPase activity), but not the spi1+ (S. pombe Ran homolog), rescued a lethality of Sprna1ts. Both Clr4 and Snf2 were reported to be involved in heterochromatin formation essential for building the centromeres. Consistently, Sprna1ts was defective in gene-silencing at the centromeres. But a silencing at the telomere, another heterochromatic region, was normal in all of Sprna1ts strains, indicating SpRna1 in general did not function for a heterochromatin formation. snf2SR+ rescued a centromeric silencing defect and Deltaclr4+ was synthetic lethal with Sprna1ts. Taken together, SpRna1 was suggested to function for constructing the centromeres, by cooperating with Clr4 and Snf2SR. Loss of SpRna1 activity, therefore, caused chromosome missegregation.  相似文献   
33.
To elucidate the physiological role of canine serum ferritin, we measured clearance rates of biotinylated ferritins in beagle. Biotinylated canine tissue ferritins were cleared rapidly from circulation. The clearance time (T1/2) of liver ferritin (H/L subunit ratio=0.43) was 6.8 to 11.8 min, and that of heart ferritin (H/L=3.69) was 9.3 to 25.0 min. T1/2 of biotinylated canine liver ferritin was independent of iron content, whereas canine heart apoferritin (T1/2=31.2 and 32.7 min) was more slowly removed from circulation than the holoferritin. On the other hand, biotinylated recombinant bovine H-chain ferritin homopolymer show a much slower rate of removal (T1/2=153.8 and 155.0 min) compared with the L-chain ferritin homopolymer (T1/2=26.4 and 31.3 min). The rapid clearance of canine tissue ferritin suggests that serum ferritin is an iron transporter in canines.  相似文献   
34.
We prepared amide compounds which were derived from ferulic acid using various amines, and investigated their stimulatory effects on insulin secretion using rat pancreatic RIN-5F cells. Most of these compounds exhibited significant promotion of the insulin-release at a concentration of 10 microM and in particular, the amides having n-butyl, n-pentyl, pyrrolidine, and piperidine groups showed high activity.  相似文献   
35.
Dendritic cells (DCs) loaded with tumor-associated Ags (TAAs) act as potent adjuvant that initiates antitumor immune responses in vivo. However, TAA-based DC vaccination requires prior identification of TAAs. Apoptotic tumor cells (ATCs) can be an excellent source for DC loading because their potential uncharacterized Ags would be efficiently presented to T cells without any prior characterization and isolation of these Ags. However, ATCs alone are considered to be inefficient for activating antitumor immunity, possibly because of their inability to induce DC maturation. In this study, the aim was to enhance antitumor immune response by taking advantage of ATCs that have been opsonized with IgG (ATC-immune complexes, ATC-ICs) so as to target them to FcR for IgG (FcgammaRs) on DCs. It was found that when compared with ATCs, ATC-ICs were efficiently internalized by DCs via FcgammaRs, and this process induced maturation of DCs, which was more efficient than that of ATCs. Importantly, ATC-IC loading was shown to be more efficient than ATCs alone in its capacity for inducing antitumor immunity in vivo, in terms of cytotoxic T cell induction and tumor rejection. These results show that using ATC-ICs may overcome the limitations and may enhance the immune response of current ATC-based DC vaccination therapy.  相似文献   
36.
Sclerosteosis is a progressive sclerosing bone dysplasia. Sclerostin (the SOST gene) was originally identified as the sclerosteosis-causing gene. However, the physiological role of sclerostin remains to be elucidated. Sclerostin was intensely expressed in developing bones of mouse embryos. Punctuated expression of sclerostin was localized on the surfaces of both intramembranously forming skull bones and endochondrally forming long bones. Sclerostin-positive cells were identified as osteoclasts. Recombinant sclerostin protein produced in cultured cells was efficiently secreted as a monomer. We examined effects of sclerostin on the activity of BMP2, BMP4, BMP6, and BMP7 for mouse preosteoblastic MC3T3-E1 cells. Sclerostin inhibited the BMP6 and BMP7 activity but not the BMP2 and BMP4 activity. Sclerostin bound to BMP6 and BMP7 with high affinity but bound to BMP2 and BMP4 with lower affinity. In conclusion, sclerostin is a novel secreted osteoclast-derived BMP antagonist with unique ligand specificity. We suggest that sclerostin negatively regulates the formation of bone by repressing the differentiation and/or function of osteoblasts induced by BMPs. Since sclerostin expression is confined to the bone-resorbing osteoclast, it provides a mechanism whereby bone apposition is inhibited in the vicinity of resorption. Our findings indicate that sclerostin plays an important role in bone remodeling and links bone resorption and bone apposition.  相似文献   
37.
The interaction of cell surface hormone receptors with heterotrimeric G proteins is crucial for hormonal actions. The domains of the receptor, which interact with and activate G protein, have been extensively studied. However, precise molecular mechanisms underlying regulation of the receptor-induced G protein activation are still poorly understood. Prostaglandin E(2) (PGE(2)) receptors comprise of four subtypes, EP1, EP2, EP3 and EP4. Among them, EP2 and EP4 couple to Gs and EP3 to Gi. To assess the functional domains essential for Gs activation in prostanoid receptors, EP2, EP3beta and each intracellular loop- (IC-) interchanged EP2/EP3 chimeras were tested for agonist binding and functional responses. In EP2 receptor, substitution of IC1 or IC3 resulted in loss of binding activity, while substitution of IC2, N- (IC2N) or C-terminal half region of IC2 (IC2C) had no effects on the binding activity. Wild-type EP2 and IC2C-substituted EP2 showed agonist-induced Gs activity, but IC2- and IC2N-substituted EP2 failed to elicit Gs activity upon agonist stimulation. On the other hand, in EP3 receptor substitution of IC1 resulted in loss of PGE(2) binding, while substitution of IC2, IC3, IC2N or IC2C had no effects on binding activity. Wild-type EP3beta, IC3- or IC2C-substituted EP3 failed to show Gs activity upon agonist stimulation, but IC2- or IC2N-substituted EP3 chimera showed agonist-dependent Gs activity. These results indicated that the second intracellular loop of the EP2 plays an essential role in activation of Gs.  相似文献   
38.
Minoda A  Sonoike K  Okada K  Sato N  Tsuzuki M 《FEBS letters》2003,553(1-2):109-112
Photosystem (PS) II activity of a sulfoquinovosyl diacylglycerol (SQDG)-deficient mutant (hf-2) of Chlamydomonas was partially decreased compared with that of wild-type. The susceptibility to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was also modified in the mutant. Photometric measurements in the isolated thylakoid membranes of hf-2 revealed that the lowered activity in the mutant was derived from a decrease in the efficiency of the electron donation from water to tyrosine Z, not from the efficiency of the electron transport from Q(A) to Q(B). This result was confirmed by the decay kinetics of chlorophyll fluorescence determined in vivo. We conclude that SQDG contributes to maintaining the conformation of PSII complexes, particularly that of D1 polypeptides, which are necessary for maximum activities in Chlamydomonas.  相似文献   
39.
UV inactivation, photoreactivation, and dark repair of Escherichia coli and Cryptosporidium parvum were investigated with the endonuclease sensitive site (ESS) assay, which can determine UV-induced pyrimidine dimers in the genomic DNA of microorganisms. In a 99.9% inactivation of E. coli, high correlation was observed between the dose of UV irradiation and the number of pyrimidine dimers induced in the DNA of E. coli. The colony-forming ability of E. coli also correlated highly with the number of pyrimidine dimers in the DNA, indicating that the ESS assay is comparable to the method conventionally used to measure colony-forming ability. When E. coli were exposed to fluorescent light after a 99.9% inactivation by UV irradiation, UV-induced pyrimidine dimers in the DNA were continuously repaired and the colony-forming ability recovered gradually. When kept in darkness after the UV inactivation, however, E. coli showed neither repair of pyrimidine dimers nor recovery of colony-forming ability. When C. parvum were exposed to fluorescent light after UV inactivation, UV-induced pyrimidine dimers in the DNA were continuously repaired, while no recovery of animal infectivity was observed. When kept in darkness after UV inactivation, C. parvum also showed no recovery of infectivity in spite of the repair of pyrimidine dimers. It was suggested, therefore, that the infectivity of C. parvum would not recover either by photoreactivation or by dark repair even after the repair of pyrimidine dimers in the genomic DNA.  相似文献   
40.
To identify residues of the rat AT1A angiotensin II receptor involved with signal transduction and binding of the non-peptide agonist L-162,313 (5,7-dimethyl-2-ethyl-3-[[4-[2(n-butyloxycarbonylsulfonamido)-5-isobutyl-3-thienyl]phenyl]methyl]imidazol[4,5,6]-pyridine) we have performed ligand binding and inositol phosphate turnover assays in COS-7 cells transiently transfected with the wild-type and mutant forms of the receptor. Mutant receptors bore modifications in the extracellular region: T88H, Y92H, G1961, G196W, and D278E. Compound L-162,313 displaced [125I]-Sar1,Leu8-AngII from the mutants G196I and G196W with IC50 values similar to that of the wild-type. The affinity was, however, slightly affected by the D278E mutation and more significantly by the T88H and Y92H mutations. In inositol phosphate turnover assays, the ability of L-162,313 to trigger the activation cascade was compared with that of angiotensin II. These assays showed that the G196W mutant reached a relative maximum activation exceeding that of the wild-type receptor; the efficacy was slightly reduced in the G1961 mutant and further reduced in the T88H, Y92H, and D278E mutants. Our data suggest that residues of the extracellular domain of the AT1 receptor are involved in the binding of the non-peptide ligand, or in a general receptor activation phenomenon that involves conformational modifications for a preferential binding of agonists or antagonists.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号