首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1069篇
  免费   65篇
  2023年   7篇
  2022年   10篇
  2021年   16篇
  2020年   10篇
  2019年   13篇
  2018年   17篇
  2017年   15篇
  2016年   26篇
  2015年   53篇
  2014年   34篇
  2013年   67篇
  2012年   71篇
  2011年   60篇
  2010年   35篇
  2009年   41篇
  2008年   69篇
  2007年   61篇
  2006年   55篇
  2005年   62篇
  2004年   50篇
  2003年   36篇
  2002年   37篇
  2001年   18篇
  2000年   26篇
  1999年   19篇
  1998年   7篇
  1996年   4篇
  1995年   9篇
  1994年   4篇
  1993年   11篇
  1992年   19篇
  1991年   14篇
  1990年   12篇
  1989年   9篇
  1988年   10篇
  1987年   9篇
  1986年   6篇
  1985年   10篇
  1984年   4篇
  1983年   5篇
  1982年   10篇
  1981年   5篇
  1979年   7篇
  1978年   8篇
  1977年   8篇
  1976年   10篇
  1975年   6篇
  1973年   6篇
  1971年   5篇
  1970年   9篇
排序方式: 共有1134条查询结果,搜索用时 15 毫秒
991.
992.
Four Na+/H+ antiporters, Mrp, TetA(L), NhaC, and MleN have so far been described in Bacillus subtilis 168. We identified an additional Na+/H+ antiporter, YvgP, from B. subtilis that exhibits homology to the cation: proton antiporter-1 (CPA-1) family. The yvgP-dependent complementation observed in a Na+(Ca2+)/H+ antiporter-defective Escherichia coli mutant (KNabc) suggested that YvgP effluxed Na+ and Li+. In addition, effects of yvgP expression on a K+ uptake-defective mutant of E. coli indicated that YvgP also supported K+ efflux. In a fluorescence-based assay of everted membrane vesicles prepared from E. coli KNabc transformants, YvgP-dependent Na+ (K+, Li+, Rb+)/H+ antiport activity was demonstrated. Na+ (K+, Li+)/H+ activity was higher at pH 8.5 than at pH 7.5. Mg2+, Ca2+ and Mn2+ did not serve as substrates but they inhibited YvgP antiport activities. Studies of yvgP expression in B. subtilis, using a reporter gene fusion, showed a significant constitutive level of expression that was highest in stationary phase, increasing as stationary phase progressed. In addition, the expression level was significantly increased in the presence of added K+ and Na+.  相似文献   
993.
994.
995.
Eukaryotic cells are equipped with machinery to monitor and repair damaged DNA. Herpes simplex virus (HSV) DNA replication occurs at discrete sites in nuclei, the replication compartment, where viral replication proteins cluster and synthesize a large amount of viral DNA. In the present study, HSV infection was found to elicit a cellular DNA damage response, with activation of the ataxia-telangiectasia-mutated (ATM) signal transduction pathway, as observed by autophosphorylation of ATM and phosphorylation of multiple downstream targets including Nbs1, Chk2, and p53, while infection with a UV-inactivated virus or with a replication-defective virus did not. Activated ATM and the DNA damage sensor MRN complex composed of Mre11, Rad50, and Nbs1 were recruited and retained at sites of viral DNA replication, probably recognizing newly synthesized viral DNAs as abnormal DNA structures. These events were not observed in ATM-deficient cells, indicating ATM dependence. In Nbs1-deficient cells, HSV infection induced an ATM DNA damage response that was delayed, suggesting a functional MRN complex requirement for efficient ATM activation. However, ATM silencing had no effect on viral replication in 293T cells. Our data open up an interesting question of how the virus is able to complete its replication, although host cells activate ATM checkpoint signaling in response to the HSV infection.  相似文献   
996.
When exposed to genotoxic stress, eukaryotic cells demonstrate a DNA damage response with delay or arrest of cell-cycle progression, providing time for DNA repair. Induction of the Epstein-Barr virus (EBV) lytic program elicited a cellular DNA damage response, with activation of the ataxia telangiectasia-mutated (ATM) signal transduction pathway. Activation of the ATM-Rad3-related (ATR) replication checkpoint pathway, in contrast, was minimal. The DNA damage sensor Mre11-Rad50-Nbs1 (MRN) complex and phosphorylated ATM were recruited and retained in viral replication compartments, recognizing newly synthesized viral DNAs as abnormal DNA structures. Phosphorylated p53 also became concentrated in replication compartments and physically interacted with viral BZLF1 protein. Despite the activation of ATM checkpoint signaling, p53-downstream signaling was blocked, with rather high S-phase CDK activity associated with progression of lytic infection. Therefore, although host cells activate ATM checkpoint signaling with response to the lytic viral DNA synthesis, the virus can skillfully evade this host checkpoint security system and actively promote an S-phase-like environment advantageous for viral lytic replication.  相似文献   
997.
Mammalian neuronal cells abundantly express a de-ubiquitinating isozyme, ubiquitin carboxy-terminal hydrolase L1 (UCH L1). Loss of UCH L1 function causes dying-back type of axonal degeneration. However, the function of UCH L1 in neuronal cells remains elusive. Here we show that overexpression of UCH L1 potentiated ATP-induced currents due to the activation of P2X receptors that are widely distributed in the brain and involved in various biological activities including neurosecretion. ATP-induced inward currents were measured in mock-, wild-type or mutant (C90S)-UCH L1-transfected PC12 cells under the conventional whole-cell patch clamp configuration. The amplitude of ATP-induced currents was significantly greater in both wild-type and C90S UCH L1-transfected cells, suggesting that hydrolase activity was not involved but increased level of mono-ubiquitin might play an important role. The increased currents were dependent on cAMP-dependent protein kinase (PKA) and Ca2+ and calmodulin-dependent protein kinase (CaMKII) but not protein kinase C. In addition, ATP-induced currents were likely to be modified via dopamine and cyclic AMP-regulated phosphoprotein (DARPP-32) that is regulated by PKA and phosphatases. Our finding shows the first evidence that there is a relationship between UCH L1 and neurotransmitter receptor, suggesting that UCH L1 may play an important role in synaptic activity.  相似文献   
998.
We tested whether modulation of the CNS-tumor microenvironment by delivery of IFN-alpha-transduced dendritic cells (DCs: DC-IFN-alpha) would enhance the therapeutic efficacy of peripheral vaccinations with cytokine-gene transduced tumor cells. Mice bearing intracranial GL261 glioma or MCA205 sarcoma received peripheral immunizations with corresponding irradiated tumor cells engineered to express IL-4 or GM-CSFs, respectively, as well as intratumoral delivery of DC-IFN-alpha. This regimen prolonged survival of the animals and induced tumor-specific CTLs that expressed TRAIL, which in concert with perforin and Fas ligand (FasL) was involved in the tumor-specific CTL activity of these cells. The in vivo antitumor activity associated with this approach was abrogated by administration of neutralizing mAbs against TRAIL or FasL and was not observed in perforin-/-, IFN-gamma-/-, or FasL-/- mice. Transduction of the tumor cells with antiapoptotic protein cellular FLIP rendered the gene-modified cells resistant to TRAIL- or FasL-mediated apoptosis and to CTL killing activity in vitro. Furthermore, the combination therapeutic regimen was ineffective in an intracranial cellular FLIP-transduced MCA205 brain tumor model. These results suggest that the combination of intratumoral delivery of DC-IFN-alpha and peripheral immunization with cytokine-gene transduced tumor cells may be an effective therapy for brain tumors that are sensitive to apoptotic signaling pathways.  相似文献   
999.
1000.
1-Phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) is a synthetic inhibitor toward glucosyl transferase. Here, we showed the functional role of sphingolipids on CD54 expression of endothelial cells (ECs) by the use of PDMP. CD54 mRNA expression in human umbilical vein endothelial cells (HUVECs) was not changed by PDMP; however, PDMP treatment significantly enhanced the expression of membrane-bound CD54 (mCD54) on HUVECs. In contrast, the amount of soluble form of CD54 (sCD54) in the culture supernatants of HUVECs was diminished by PDMP. Similar results were obtained when HUVECs were incubated with metalloproteinase inhibitor, KB-R8301, or in the presence of C2-ceramide. The above effect of PDMP, KB-R8301, and C2-ceramide in HUVECs was commonly found in unstimulated, TNF-alpha-stimulated, and IL-1beta-stimulated HUVECs. These data provide the possibility that the shedding of mCD54 into sCD54 by metalloproteinase-like enzyme is inhibited by PDMP, in which PDMP-induced accumulation of ceramide may act as a second messenger.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号