首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   2篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1993年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
11.
An amperometric multienzyme biosensor for determination of triglycerides (TGs) was constructed by mounting three gelatin membrane-bound enzymes on a glassy carbon electrode (working electrode), then connecting it to electrometer along with an Ag/AgCl reference electrode and a Pt auxiliary electrode. Characterization and optimization of the multienzyme biosensor, which is prepared with glycerol kinase (GK) (E.C.2.7.1.30), glycerol-3-phosphate oxidase (GPO) (EC 1.1.3.21), and lipase (EC 3.1.1.3), were studied. In the optimization studies for the bioactive layer components of the prepared biosensor, the optimum amounts of gelatin, bovine serum albumin (BSA), and glutaraldehyde was calculated as 1 mg/cm2, 1 mg/cm2, and 2.5%, respectively. Optimum pH and temperature of the reaction of biosensor were determined as 7.0 and 40°C, respectively. Linear range of triolein for the biosensor was found from the calibration curve between several substrate concentration and Δ Current. After optimization and characterization of the biosensor, its operationability in triglycerides was also tested.  相似文献   
12.
Glc7, the yeast protein phosphatase 1, is a component of the cleavage and polyadenylation factor (CPF). Here we show that downregulation of Glc7, or its dissociation from CPF in the absence of CPF subunits Ref2 or Swd2, results in similar snoRNA termination defects. Overexpressing a C-terminal fragment of Sen1, a superfamily I helicase required for snoRNA termination, suppresses the growth and termination defects associated with loss of Swd2 or Ref2, but not Glc7. Suppression by Sen1 requires nuclear localization and direct interaction with Glc7, which can dephosphorylate Sen1 in vitro. The suppressing fragment, and in a similar manner full-length Sen1, copurifies with the snoRNA termination factors Nrd1 and Nab3, suggesting loss of Glc7 from CPF can be compensated by recruiting Glc7 to Nrd1-Nab3 through Sen1. Swd2 is also a subunit of the Set1c histone H3K4 methyltransferase complex and is required for its stability and optimal methyltransferase activity.  相似文献   
13.
The Rho guanine nucleotide exchange factor GEF-H1 is uniquely regulated by microtubule binding and is crucial in coupling microtubule dynamics to Rho-GTPase activation in a variety of normal biological situations. Here, we review the roles of GEF-H1 in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, and cancer. GEF-H1 might also contribute to pathophysiological signaling involved in leukemias, and in cancers associated with mutated p53 tumor suppressor gene, epithelial and endothelial cell dysfunction, infectious disease, and cardiac hypertrophy. We suggest that GEF-H1 could be a novel therapeutic target in multiple human diseases.  相似文献   
14.
Actinobacillus (Aggregatibacter) actinomycetemicomitans (Aa) is a bacterium that lives in the oral cavity and plays an important role in periodontal diseases. The effect of A.actinomycetemcomitans’s heat shock family protein GroEL on host or immune cells including monocytes is quite limited. In this study, the recombinant A.actinomycetemcomitans’s GroEL protein (rAaGroEL) was used as an antigen and its effects on monocytes of peripheral blood mononuclear cells (PBMCs) was investigated. To do that, PBMCs were stimulated with rAaGroEL protein at different time points (16h to 96h) and the cytokines of CD14+ monocytes were detected with intracellular cytokine staining by Flow cytometry. Data showed that AaGroEL protein has an antigenic effect on human primary monocytes. AaGroEL protein responsive CD14 monocytes stimulates the expression of IL12, IL10, IFNγ and TNFα cytokines with different kinetics and expression profile. Therefore, A. actinomycetemcomitans’s heat shock GroEL protein can modulate innate and adaptive immune responses and contribute to an inflammatory diseases pathology.  相似文献   
15.
16.
Small proteins play essential roles in bacterial physiology and virulence, however, automated algorithms for genome annotation are often not yet able to accurately predict the corresponding genes. The accuracy and reliability of genome annotations, particularly for small open reading frames (sORFs), can be significantly improved by integrating protein evidence from experimental approaches. Here we present a highly optimized and flexible bioinformatics workflow for bacterial proteogenomics covering all steps from (i) generation of protein databases, (ii) database searches and (iii) peptide-to-genome mapping to (iv) visualization of results. We used the workflow to identify high quality peptide spectrum matches (PSMs) for small proteins (≤ 100 aa, SP100) in Staphylococcus aureus Newman. Protein extracts from S. aureus were subjected to different experimental workflows for protein digestion and prefractionation and measured with highly sensitive mass spectrometers. In total, 175 proteins with up to 100 aa (SP100) were identified. Out of these 24 (ranging from 9 to 99 aa) were novel and not contained in the used genome annotation.144 SP100 are highly conserved and were found in at least 50% of the publicly available S. aureus genomes, while 127 are additionally conserved in other staphylococci. Almost half of the identified SP100 were basic, suggesting a role in binding to more acidic molecules such as nucleic acids or phospholipids.  相似文献   
17.
Different branches of industry need to use phenolic compounds (PCs) in their production, so determination of PCs sensitively, accurately, rapidly, and economically is very important. For the sensitive determination of PCs, some biosensors based on pure polyphenol oxidase, plant tissue and microorganisms were developed before. But there has been no study to develop a microbial phenolic compounds biosensor based on Lactobacillus species, which contain polyphenol oxidase enzyme. In this study, we used different forms of Lactobacillus species as enzyme sources of biosensor and compared biosensor performances of these forms for determination of PCs. For this purpose, we used lyophilized Lactobacillus cells (containing L. bulgaricus, L. acidophilus, Streptococcus thermophilus), pure L. acidophilus, pure L. bulgaricus, and L. acidophilus- and L. bulgaricus adapted to catechol in Lactobacilli MRS Broth. The most suitable form was determined and optimization studies of the biosensor were carried out by using this form. For preparing the bioactive layer of the biosensor, the Lactobacillus cells were immobilized in gelatin by using glutaraldehyde. In the study, we used catechol as a substrate. Phenolic compound determination is based on the assay of the differences on the respiration activity of the cells on the oxygen meter in the absence and the presence of catechol. The microbial biosensor response depends directly on catechol concentration between 0.5 and 5.0 mM with 18 min response time. In the optimization studies of the microbial biosensor the most suitable microorganism amount was found to be 10 mg, and also phosphate buffer (pH 8.0; 50 mM) and 37.5 °C were obtained as the optimum working conditions. In the characterization studies of the microbial biosensor some parameters such as substrate specificity on the biosensor response and operational and storage stability were examine. Furthermore, the determination of PC levels in synthetic wastewater, industrial wastewater, and milk products was investigated by using the developed biosensor under optimum conditions.  相似文献   
18.
In this study, 99 Gram-negative rod bacteria were isolated from cooling tower water, and biofilm samples were examined for cell-to-cell signaling systems, N-acyl homoserine lactone (AHL) signal molecule types, and biofilm formation capacity. Four of 39 (10 %) strains isolated from water samples and 14 of 60 (23 %) strains isolated from biofilm samples were found to be producing a variety of AHL signal molecules. It was determined that the AHL signal molecule production ability and the biofilm formation capacity of sessile bacteria is higher than planktonic bacteria, and there was a statistically significant difference between the AHL signal molecule production of these two groups (p?<?0.05). In addition, it was found that bacteria belonging to the same species isolated from cooling tower water and biofilm samples produced different types of AHL signal molecules and that there were different types of AHL signal molecules in an AHL extract of bacteria. In the present study, it was observed that different isolates of the same strains did not produce the same AHLs or did not produce AHL molecules, and bacteria known as AHL producers did not produce AHL. These findings suggest that detection of signal molecules in bacteria isolated from cooling towers may contribute to prevention of biofilm formation, elimination of communication among bacteria in water systems, and blockage of quorum-sensing controlled virulence of these bacteria.  相似文献   
19.
The MN1 oncogene is deregulated in human acute myeloid leukemia and its overexpression induces proliferation and represses myeloid differentiation of primitive human and mouse hematopoietic cells, leading to myeloid leukemia in mouse models. To delineate the sequences within MN1 necessary for MN1-induced leukemia, we tested the transforming capacity of in-frame deletion mutants, using retroviral transduction of mouse bone marrow. We found that integrity of the regions between amino acids 12 to 458 and 1119 to 1273 are required for MN1’s in vivo transforming activity, generating myeloid leukemia with some mutants also producing T-cell lympho-leukemia and megakaryocytic leukemia. Although both full length MN1 and a mutant that lacks the residues between 12–228 (Δ12–228 mutant) repressed myeloid differentiation and increased myeloproliferative activity in vitro, the mutant lost its transforming activity in vivo. Both MN1 and Δ12–228 increased the frequency of common myeloid progentiors (CMP) in vitro and microarray comparisons of purified MN1-CMP and Δ12–228-CMP cells showed many differentially expressed genes including Hoxa9, Meis1, Myb, Runx2, Cebpa, Cebpb and Cebpd. This collection of immediate MN1-responsive candidate genes distinguishes the leukemic activity from the in vitro myeloproliferative capacity of this oncoprotein.  相似文献   
20.
A fundamental feature of cell polarity in response to spatial cues is asymmetric amplification of molecules generated by positive feedback signaling. We report a positive feedback loop between the guanosine triphosphatase Cdc42, a central determinant in eukaryotic cell polarity, and H(+) efflux by Na-H(+) exchanger 1 (NHE1), which is necessary at the front of migrating cells for polarity and directional motility. In response to migratory cues, Cdc42 is not activated in fibroblasts expressing a mutant NHE1 that lacks H(+) efflux, and wild-type NHE1 is not activated in fibroblasts expressing mutationally inactive Cdc42-N17. H(+) efflux by NHE1 is not necessary for release of Cdc42-guanosine diphosphate (GDP) from Rho GDP dissociation inhibitor or for the membrane recruitment of Cdc42 but is required for GTP binding by Cdc42 catalyzed by a guanine nucleotide exchange factor (GEF). Data indicate that GEF binding to phosphotidylinositol 4,5-bisphosphate is pH dependent, suggesting a mechanism for how H(+) efflux by NHE1 promotes Cdc42 activity to generate a positive feedback signal necessary for polarity in migrating cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号