首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   9篇
  302篇
  2023年   3篇
  2022年   8篇
  2021年   10篇
  2020年   6篇
  2019年   1篇
  2018年   7篇
  2017年   3篇
  2016年   13篇
  2015年   11篇
  2014年   23篇
  2013年   24篇
  2012年   29篇
  2011年   25篇
  2010年   15篇
  2009年   9篇
  2008年   19篇
  2007年   24篇
  2006年   17篇
  2005年   16篇
  2004年   10篇
  2003年   10篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1996年   2篇
  1992年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有302条查询结果,搜索用时 12 毫秒
51.
Pseudomonas aeruginosa infections are particularly common in people with cystic fibrosis and despite regular treatment with antibiotics, lung damage due to chronic infection with P. aeruginosa remains the major cause of death in those patients. In order to initiate an infection, P. aeruginosa needs contact with the respiratory epithelial surface and by means of its adhesins i.e., fimbria, hemagglutinins,etc., it recognizes and adheres to the corresponding epithelial receptors. We treated P. aeruginosa strains isolated from sputum of cystic fibrosis patients with several glycolipids such as sulfatide, sulfated ganglioside mixture (GM1a, GD1b, GT1b), asialo-GM1 and galactocerebrosides to determine their effect on attachment with pharyngeal epithelial cells. Sulfated ganglioside mixture and sulfatide inhibited the attachment of P. aeruginosa significantly, whereas asialo-GM1, Gal-Cer and sodium sulfite had no effect on attachment inhibition. This finding suggests that sulfated glycoconjugates found in the extracellular matrix, in mucus and on the surface of epithelial cells of human trachea and lung mediates attachment of P. aeruginosa.  相似文献   
52.
We isolated and characterized a nickel (Ni2+)-resistant mutant (GA1) of Schizosaccharomyces pombe. This mutant strain displayed resistance to both Ni2+ and Zn2+, but not to Cd2+, Co2+, and Cu2+. The growth rate of GA1 increased proportionally with increasing Mg2+ concentrations until 50 mM Mg2+. The GA1 mutation phenotype suggests a defect in Mg2+ uptake. Sequence analysis of the GA1 open reading frame (ORF) O13779, which is homologous to the prokaryotic and eukaryotic CorA Mg2+ transport systems, revealed a point mutation at codon 153 (ccc to acc) resulting in a Pro 153Thr substitution in the N-terminus of the CorA domain. Our results provide novel genetic information about Ni2+ resistance in fission yeast. Specifically, that reducing Mg2+ influx through the CorA Mg2+ transport membrane protein confers Ni2+ resistance in S. pombe. We also report that Ni2+ ion detoxification of the fission yeast is related to histidine metabolism and pH.  相似文献   
53.
We investigated the effect of an injected bolus of 5 mg kg- heparin at one circadian stage (08:30 to 11:00) on blood coagulation during different months of the year. Activated clotting times (ACTs) were assessed before and 5 min after heparin dosing to ensure extracorporeal circulation during open-heart surgery. The ACT data of 1083 presumably day-active Turkish patients (816 men and 267 women, mostly older than 46 years) who underwent coronary bypass surgery between 08:30 and 11:00 in the years from 1994 to 1997 were analyzed for annual rhythmicity. The ACT values obtained just before and 5 min after heparinization were subjected to cosinor analysis using a 365.25-day period to assess seasonality in basal ACT level and heparin effect. A small-amplitude annual rhythm with a wintertime peak was documented in the morning ACT in the group of 1083 patients. Rhythms of similar magnitude and staging were also detected in heparin effect on ACT in the 1083 patients and in subgroups categorized by gender. Circannual rhythmicity in the heparin effect on ACT was also documented in the elderly (≥ 45 years old), but not young (18-45 years old) patients. The annual mean effect of heparin on the ACT was statistically significantly greater in younger than older patients. The relatively low-amplitude circannual rhythm in heparin effect on ACT (∼10% of the annual mean) is not viewed as being meaningful in patient preparation for bypass surgery for the 5 mg kg-1 level of heparin dosing. (Chronobiology International, 18(5), 865-873, 2001)  相似文献   
54.
We aim to ascertain the possible involvement of functional IL10 and TNF-α promoter polymorphisms on the susceptibility to Behçet’s syndrome (BS), to examine whether IL10 and TNF-α genotypes might work synergistically influencing susceptibility to BS. IL10 ?1082G/A, ?819C/T and ?592C/A and TNF ?308G/A polymorphisms were analyzed in 102 Turkish patients with BS and 102 healthy subjects by using amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). We have found no significant associations between IL10 ?1082G/A, ?819C/T, ?592C/A, TNF-α ?308G/A polymorphisms and BS. Also, no significant correlation was found between IL10 GCC, ACC, ATA haplotypes, GCC+/GCC+, GCC+/GCC?, GCC?/GCC? genotypes. There was no significant association between combined TNF-α/IL10 genotypes and BS. Our study indicates that functional TNF-α, IL10 genotypes or combined TNF-α, IL10 genotypes do not play a role in BS susceptibility in Turkish BS patients.  相似文献   
55.
 The combination of CD16/CD30 bispecific monoclonal antibodies (bi-mAb) and unstimulated human resting natural killer (NK) cells can cure about 50% of mice with severe combined immunodeficiency (SCID) bearing subcutaneously growing established Hodgkin’s lymphoma. As interleukin-2 (IL-2) and IL-12 have been shown to increase NK cell activity, we tested the capacity of these cytokines to increase bi-mAb-mediated NK cell cytotoxicity against two types of human tumors (Hodgkin’s disease and colorectal carcinoma). Unstimulated NK cells needed a three- to five-times higher antibody concentration than cytokine-stimulated NK cells to exert similar levels of bi-mAb-mediated cytotoxicity. The augmented tumor cell lysis was achieved with IL-12 at considerably lower concentrations than with IL-2 and was associated with a significantly increased bi-mAb-mediated intracellular Ca2+ mobilization. The efficiency of IL-12 in this setting together with its low toxicity make it the ideal candidate for a combination therapy with NK-cell-activating bi-mAb in human tumors that are resistant to standard treatment. Received: 26 July 1995 / Accepted: 16 November 1995  相似文献   
56.
57.
Neuroimaging studies of human cognitive, sensory, and motor processes are usually based on noninvasive techniques such as electroencephalography (EEG), magnetoencephalography or functional magnetic-resonance imaging. These techniques have either inherently low temporal or low spatial resolution, and suffer from low signal-to-noise ratio and/or poor high-frequency sensitivity. Thus, they are suboptimal for exploring the short-lived spatio-temporal dynamics of many of the underlying brain processes. In contrast, the invasive technique of electrocorticography (ECoG) provides brain signals that have an exceptionally high signal-to-noise ratio, less susceptibility to artifacts than EEG, and a high spatial and temporal resolution (i.e., <1 cm/<1 millisecond, respectively). ECoG involves measurement of electrical brain signals using electrodes that are implanted subdurally on the surface of the brain. Recent studies have shown that ECoG amplitudes in certain frequency bands carry substantial information about task-related activity, such as motor execution and planning1, auditory processing2 and visual-spatial attention3. Most of this information is captured in the high gamma range (around 70-110 Hz). Thus, gamma activity has been proposed as a robust and general indicator of local cortical function1-5. ECoG can also reveal functional connectivity and resolve finer task-related spatial-temporal dynamics, thereby advancing our understanding of large-scale cortical processes. It has especially proven useful for advancing brain-computer interfacing (BCI) technology for decoding a user''s intentions to enhance or improve communication6 and control7. Nevertheless, human ECoG data are often hard to obtain because of the risks and limitations of the invasive procedures involved, and the need to record within the constraints of clinical settings. Still, clinical monitoring to localize epileptic foci offers a unique and valuable opportunity to collect human ECoG data. We describe our methods for collecting recording ECoG, and demonstrate how to use these signals for important real-time applications such as clinical mapping and brain-computer interfacing. Our example uses the BCI2000 software platform8,9 and the SIGFRIED10 method, an application for real-time mapping of brain functions. This procedure yields information that clinicians can subsequently use to guide the complex and laborious process of functional mapping by electrical stimulation.

Prerequisites and Planning:

Patients with drug-resistant partial epilepsy may be candidates for resective surgery of an epileptic focus to minimize the frequency of seizures. Prior to resection, the patients undergo monitoring using subdural electrodes for two purposes: first, to localize the epileptic focus, and second, to identify nearby critical brain areas (i.e., eloquent cortex) where resection could result in long-term functional deficits. To implant electrodes, a craniotomy is performed to open the skull. Then, electrode grids and/or strips are placed on the cortex, usually beneath the dura. A typical grid has a set of 8 x 8 platinum-iridium electrodes of 4 mm diameter (2.3 mm exposed surface) embedded in silicon with an inter-electrode distance of 1cm. A strip typically contains 4 or 6 such electrodes in a single line. The locations for these grids/strips are planned by a team of neurologists and neurosurgeons, and are based on previous EEG monitoring, on a structural MRI of the patient''s brain, and on relevant factors of the patient''s history. Continuous recording over a period of 5-12 days serves to localize epileptic foci, and electrical stimulation via the implanted electrodes allows clinicians to map eloquent cortex. At the end of the monitoring period, explantation of the electrodes and therapeutic resection are performed together in one procedure.In addition to its primary clinical purpose, invasive monitoring also provides a unique opportunity to acquire human ECoG data for neuroscientific research. The decision to include a prospective patient in the research is based on the planned location of their electrodes, on the patient''s performance scores on neuropsychological assessments, and on their informed consent, which is predicated on their understanding that participation in research is optional and is not related to their treatment. As with all research involving human subjects, the research protocol must be approved by the hospital''s institutional review board. The decision to perform individual experimental tasks is made day-by-day, and is contingent on the patient''s endurance and willingness to participate. Some or all of the experiments may be prevented by problems with the clinical state of the patient, such as post-operative facial swelling, temporary aphasia, frequent seizures, post-ictal fatigue and confusion, and more general pain or discomfort.At the Epilepsy Monitoring Unit at Albany Medical Center in Albany, New York, clinical monitoring is implemented around the clock using a 192-channel Nihon-Kohden Neurofax monitoring system. Research recordings are made in collaboration with the Wadsworth Center of the New York State Department of Health in Albany. Signals from the ECoG electrodes are fed simultaneously to the research and the clinical systems via splitter connectors. To ensure that the clinical and research systems do not interfere with each other, the two systems typically use separate grounds. In fact, an epidural strip of electrodes is sometimes implanted to provide a ground for the clinical system. Whether research or clinical recording system, the grounding electrode is chosen to be distant from the predicted epileptic focus and from cortical areas of interest for the research. Our research system consists of eight synchronized 16-channel g.USBamp amplifier/digitizer units (g.tec, Graz, Austria). These were chosen because they are safety-rated and FDA-approved for invasive recordings, they have a very low noise-floor in the high-frequency range in which the signals of interest are found, and they come with an SDK that allows them to be integrated with custom-written research software. In order to capture the high-gamma signal accurately, we acquire signals at 1200Hz sampling rate-considerably higher than that of the typical EEG experiment or that of many clinical monitoring systems. A built-in low-pass filter automatically prevents aliasing of signals higher than the digitizer can capture. The patient''s eye gaze is tracked using a monitor with a built-in Tobii T-60 eye-tracking system (Tobii Tech., Stockholm, Sweden). Additional accessories such as joystick, bluetooth Wiimote (Nintendo Co.), data-glove (5th Dimension Technologies), keyboard, microphone, headphones, or video camera are connected depending on the requirements of the particular experiment.Data collection, stimulus presentation, synchronization with the different input/output accessories, and real-time analysis and visualization are accomplished using our BCI2000 software8,9. BCI2000 is a freely available general-purpose software system for real-time biosignal data acquisition, processing and feedback. It includes an array of pre-built modules that can be flexibly configured for many different purposes, and that can be extended by researchers'' own code in C++, MATLAB or Python. BCI2000 consists of four modules that communicate with each other via a network-capable protocol: a Source module that handles the acquisition of brain signals from one of 19 different hardware systems from different manufacturers; a Signal Processing module that extracts relevant ECoG features and translates them into output signals; an Application module that delivers stimuli and feedback to the subject; and the Operator module that provides a graphical interface to the investigator.A number of different experiments may be conducted with any given patient. The priority of experiments will be determined by the location of the particular patient''s electrodes. However, we usually begin our experimentation using the SIGFRIED (SIGnal modeling For Realtime Identification and Event Detection) mapping method, which detects and displays significant task-related activity in real time. The resulting functional map allows us to further tailor subsequent experimental protocols and may also prove as a useful starting point for traditional mapping by electrocortical stimulation (ECS).Although ECS mapping remains the gold standard for predicting the clinical outcome of resection, the process of ECS mapping is time consuming and also has other problems, such as after-discharges or seizures. Thus, a passive functional mapping technique may prove valuable in providing an initial estimate of the locus of eloquent cortex, which may then be confirmed and refined by ECS. The results from our passive SIGFRIED mapping technique have been shown to exhibit substantial concurrence with the results derived using ECS mapping10.The protocol described in this paper establishes a general methodology for gathering human ECoG data, before proceeding to illustrate how experiments can be initiated using the BCI2000 software platform. Finally, as a specific example, we describe how to perform passive functional mapping using the BCI2000-based SIGFRIED system.  相似文献   
58.

Background

Breast cancer in young women tends to have a natural history of aggressive disease for which rates of recurrence are higher than in breast cancers detected later in life. Little is known about the genetic pathways that underlie early-onset breast cancer. Here we report the discovery of DEAR1 (ductal epithelium–associated RING Chromosome 1), a novel gene encoding a member of the TRIM (tripartite motif) subfamily of RING finger proteins, and provide evidence for its role as a dominant regulator of acinar morphogenesis in the mammary gland and as an independent predictor of local recurrence-free survival in early-onset breast cancer.

Methods and Findings

Suppression subtractive hybridization identified DEAR1 as a novel gene mapping to a region of high-frequency loss of heterozygosity (LOH) in a number of histologically diverse human cancers within Chromosome 1p35.1. In the breast epithelium, DEAR1 expression is limited to the ductal and glandular epithelium and is down-regulated in transition to ductal carcinoma in situ (DCIS), an early histologic stage in breast tumorigenesis. DEAR1 missense mutations and homozygous deletion (HD) were discovered in breast cancer cell lines and tumor samples. Introduction of the DEAR1 wild type and not the missense mutant alleles to complement a mutation in a breast cancer cell line, derived from a 36-year-old female with invasive breast cancer, initiated acinar morphogenesis in three-dimensional (3D) basement membrane culture and restored tissue architecture reminiscent of normal acinar structures in the mammary gland in vivo. Stable knockdown of DEAR1 in immortalized human mammary epithelial cells (HMECs) recapitulated the growth in 3D culture of breast cancer cell lines containing mutated DEAR1, in that shDEAR1 clones demonstrated disruption of tissue architecture, loss of apical basal polarity, diffuse apoptosis, and failure of lumen formation. Furthermore, immunohistochemical staining of a tissue microarray from a cohort of 123 young female breast cancer patients with a 20-year follow-up indicated that in early-onset breast cancer, DEAR1 expression serves as an independent predictor of local recurrence-free survival and correlates significantly with strong family history of breast cancer and the triple-negative phenotype (ER, PR, HER-2) of breast cancers with poor prognosis.

Conclusions

Our data provide compelling evidence for the genetic alteration and loss of expression of DEAR1 in breast cancer, for the functional role of DEAR1 in the dominant regulation of acinar morphogenesis in 3D culture, and for the potential utility of an immunohistochemical assay for DEAR1 expression as an independent prognostic marker for stratification of early-onset disease.  相似文献   
59.
Substituted polyaniline/chitosan (sPANI/Ch) composites were chemically synthesized in H2SO4 and CH3COOH synthesis media. Structural and physical properties of the composites were characterized by using FTIR, SEM, TGA, UV–vis, XRD techniques, and conductivity measurements. The effect of synthesis media on morphology, thermal stability, conductivity, and crystalline properties was investigated. Chemical interactions between substituted polyanilines and chitosan were explained using FTIR spectra results. The different morphological surfaces were observed in SEM images of the composites. The size of the substituted polyaniline/chitosan (sPANI/Ch) composites was in nanoscale, and the composites synthesized in acetic acid media showed smaller structures than those of H2SO4 media and pure chitosan. It was interpreted from XRD results that the composites have amorphous structure and the PNEANI/Ch–CH3COOH composite has the highest crystallinity.  相似文献   
60.
Dagci T  Sengul G  Keser A  Onal A 《Life sciences》2011,88(17-18):746-752
AimsThe aim of this study is to determine the role of nitric oxide (NO) in neuropathic pain and the effect of embryonic neural stem cell (ENSC) transplantation on NO content in rat spinal cord neurons following spinal cord injury (SCI).Main methodsNinety adult male Sprague–Dawley rats were divided into 3 groups (n = 30, each): control (laminectomy), SCI (hemisection at T12–T13 segments) and SCI + ENSC. Each group was further divided into sub-groups (n = 5 each) based on the treatment substance (L-NAME, 75 mg/kg/i.p.; l-arginine, 225 mg/kg/i.p.; physiological saline, SF) and duration (2 h for acute and 28 days for chronic groups). Pain was assessed by tail flick and Randall–Selitto tests. Fos immunohistochemistry and NADPH-d histochemistry were performed in segments 2 cm rostral and caudal to SCI.Key findingsTail-flick latency time increased in both acute and chronic L-NAME groups and increased in acute and decreased in chronic l-arginine groups. The number of Fos (+) neurons decreased in acute and chronic L-NAME and decreased in acute l-arginine groups. Following ENSC, Fos (+) neurons did not change in acute L-NAME but decreased in the chronic L-NAME groups, and decreased in both acute and chronic l-arginine groups. NADPH-d (+) neurons decreased in acute L-NAME and increased in l-arginine groups with and without ENSC transplantation.SignificanceThis study confirms the role of NO in neuropathic pain and shows an improvement following ENSC transplantation in the acute phase, observed as a decrease in Fos(+) and NADPH-d (+) neurons in spinal cord segments rostral and caudal to injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号