首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   2篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   8篇
  2014年   10篇
  2013年   13篇
  2012年   15篇
  2011年   10篇
  2010年   7篇
  2009年   6篇
  2008年   8篇
  2007年   7篇
  2006年   8篇
  2005年   4篇
  2004年   4篇
  2003年   6篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1992年   1篇
排序方式: 共有132条查询结果,搜索用时 15 毫秒
21.
The exact nature of the relationship among species range sizes, speciation, and extinction events is not well understood. The factors that promote larger ranges, such as broad niche widths and high dispersal abilities, could increase the likelihood of encountering new habitats but also prevent local adaptation due to high gene flow. Similarly, low dispersal abilities or narrower niche widths could cause populations to be isolated, but such populations may lack advantageous mutations due to low population sizes. Here we present a large-scale, spatially explicit, individual-based model addressing the relationships between species ranges, speciation, and extinction. We followed the evolutionary dynamics of hundreds of thousands of diploid individuals for 200,000 generations. Individuals adapted to multiple resources and formed ecological species in a multidimensional trait space. These species varied in niche widths, and we observed the coexistence of generalists and specialists on a few resources. Our model shows that species ranges correlate with dispersal abilities but do not change with the strength of fitness trade-offs; however, high dispersal abilities and low resource utilization costs, which favored broad niche widths, have a strong negative effect on speciation rates. An unexpected result of our model is the strong effect of underlying resource distributions on speciation: in highly fragmented landscapes, speciation rates are reduced.  相似文献   
22.
The autosomal-recessive form of popliteal pterygium syndrome, also known as Bartsocas-Papas syndrome, is a rare, but frequently lethal disorder characterized by marked popliteal pterygium associated with multiple congenital malformations. Using Affymetrix 250K SNP array genotyping and homozygosity mapping, we mapped this malformation syndrome to chromosomal region 21q22.3. Direct sequencing of RIPK4 (receptor-interacting serine/threonine kinase protein 4) showed a homozygous transversion (c.362T>A) that causes substitution of a conserved isoleucine with asparagine at amino acid position 121 (p.Ile121Asn) in the serine/threonine kinase domain of the protein. Additional pathogenic mutations-a homozygous transition (c.551C>T) that leads to a missense substitution (p.Thr184Ile) at a conserved position and a homozygous one base-pair insertion mutation (c.777_778insA) predicted to lead to a premature stop codon (p.Arg260ThrfsX14) within the kinase domain-were observed in two families. Molecular modeling of the kinase domain showed that both the Ile121 and Thr184 positions are critical for the protein's stability and kinase activity. Luciferase reporter assays also demonstrated that these mutations are critical for the catalytic activity of RIPK4. RIPK4 mediates activation of the nuclear factor-κB (NF-κB) signaling pathway and is required for keratinocyte differentiation and craniofacial and limb development. The phenotype of Ripk4(-/-) mice is consistent with the human phenotype presented herein. Additionally, the spectrum of malformations observed in the presented families is similar, but less severe than the conserved helix-loop-helix ubiquitous kinase (CHUK)-deficient human fetus phenotype; known as Cocoon syndrome; this similarity indicates that RIPK4 and CHUK might function via closely related pathways to promote keratinocyte differentiation and epithelial growth.  相似文献   
23.
Neuroimaging studies of human cognitive, sensory, and motor processes are usually based on noninvasive techniques such as electroencephalography (EEG), magnetoencephalography or functional magnetic-resonance imaging. These techniques have either inherently low temporal or low spatial resolution, and suffer from low signal-to-noise ratio and/or poor high-frequency sensitivity. Thus, they are suboptimal for exploring the short-lived spatio-temporal dynamics of many of the underlying brain processes. In contrast, the invasive technique of electrocorticography (ECoG) provides brain signals that have an exceptionally high signal-to-noise ratio, less susceptibility to artifacts than EEG, and a high spatial and temporal resolution (i.e., <1 cm/<1 millisecond, respectively). ECoG involves measurement of electrical brain signals using electrodes that are implanted subdurally on the surface of the brain. Recent studies have shown that ECoG amplitudes in certain frequency bands carry substantial information about task-related activity, such as motor execution and planning1, auditory processing2 and visual-spatial attention3. Most of this information is captured in the high gamma range (around 70-110 Hz). Thus, gamma activity has been proposed as a robust and general indicator of local cortical function1-5. ECoG can also reveal functional connectivity and resolve finer task-related spatial-temporal dynamics, thereby advancing our understanding of large-scale cortical processes. It has especially proven useful for advancing brain-computer interfacing (BCI) technology for decoding a user''s intentions to enhance or improve communication6 and control7. Nevertheless, human ECoG data are often hard to obtain because of the risks and limitations of the invasive procedures involved, and the need to record within the constraints of clinical settings. Still, clinical monitoring to localize epileptic foci offers a unique and valuable opportunity to collect human ECoG data. We describe our methods for collecting recording ECoG, and demonstrate how to use these signals for important real-time applications such as clinical mapping and brain-computer interfacing. Our example uses the BCI2000 software platform8,9 and the SIGFRIED10 method, an application for real-time mapping of brain functions. This procedure yields information that clinicians can subsequently use to guide the complex and laborious process of functional mapping by electrical stimulation.

Prerequisites and Planning:

Patients with drug-resistant partial epilepsy may be candidates for resective surgery of an epileptic focus to minimize the frequency of seizures. Prior to resection, the patients undergo monitoring using subdural electrodes for two purposes: first, to localize the epileptic focus, and second, to identify nearby critical brain areas (i.e., eloquent cortex) where resection could result in long-term functional deficits. To implant electrodes, a craniotomy is performed to open the skull. Then, electrode grids and/or strips are placed on the cortex, usually beneath the dura. A typical grid has a set of 8 x 8 platinum-iridium electrodes of 4 mm diameter (2.3 mm exposed surface) embedded in silicon with an inter-electrode distance of 1cm. A strip typically contains 4 or 6 such electrodes in a single line. The locations for these grids/strips are planned by a team of neurologists and neurosurgeons, and are based on previous EEG monitoring, on a structural MRI of the patient''s brain, and on relevant factors of the patient''s history. Continuous recording over a period of 5-12 days serves to localize epileptic foci, and electrical stimulation via the implanted electrodes allows clinicians to map eloquent cortex. At the end of the monitoring period, explantation of the electrodes and therapeutic resection are performed together in one procedure.In addition to its primary clinical purpose, invasive monitoring also provides a unique opportunity to acquire human ECoG data for neuroscientific research. The decision to include a prospective patient in the research is based on the planned location of their electrodes, on the patient''s performance scores on neuropsychological assessments, and on their informed consent, which is predicated on their understanding that participation in research is optional and is not related to their treatment. As with all research involving human subjects, the research protocol must be approved by the hospital''s institutional review board. The decision to perform individual experimental tasks is made day-by-day, and is contingent on the patient''s endurance and willingness to participate. Some or all of the experiments may be prevented by problems with the clinical state of the patient, such as post-operative facial swelling, temporary aphasia, frequent seizures, post-ictal fatigue and confusion, and more general pain or discomfort.At the Epilepsy Monitoring Unit at Albany Medical Center in Albany, New York, clinical monitoring is implemented around the clock using a 192-channel Nihon-Kohden Neurofax monitoring system. Research recordings are made in collaboration with the Wadsworth Center of the New York State Department of Health in Albany. Signals from the ECoG electrodes are fed simultaneously to the research and the clinical systems via splitter connectors. To ensure that the clinical and research systems do not interfere with each other, the two systems typically use separate grounds. In fact, an epidural strip of electrodes is sometimes implanted to provide a ground for the clinical system. Whether research or clinical recording system, the grounding electrode is chosen to be distant from the predicted epileptic focus and from cortical areas of interest for the research. Our research system consists of eight synchronized 16-channel g.USBamp amplifier/digitizer units (g.tec, Graz, Austria). These were chosen because they are safety-rated and FDA-approved for invasive recordings, they have a very low noise-floor in the high-frequency range in which the signals of interest are found, and they come with an SDK that allows them to be integrated with custom-written research software. In order to capture the high-gamma signal accurately, we acquire signals at 1200Hz sampling rate-considerably higher than that of the typical EEG experiment or that of many clinical monitoring systems. A built-in low-pass filter automatically prevents aliasing of signals higher than the digitizer can capture. The patient''s eye gaze is tracked using a monitor with a built-in Tobii T-60 eye-tracking system (Tobii Tech., Stockholm, Sweden). Additional accessories such as joystick, bluetooth Wiimote (Nintendo Co.), data-glove (5th Dimension Technologies), keyboard, microphone, headphones, or video camera are connected depending on the requirements of the particular experiment.Data collection, stimulus presentation, synchronization with the different input/output accessories, and real-time analysis and visualization are accomplished using our BCI2000 software8,9. BCI2000 is a freely available general-purpose software system for real-time biosignal data acquisition, processing and feedback. It includes an array of pre-built modules that can be flexibly configured for many different purposes, and that can be extended by researchers'' own code in C++, MATLAB or Python. BCI2000 consists of four modules that communicate with each other via a network-capable protocol: a Source module that handles the acquisition of brain signals from one of 19 different hardware systems from different manufacturers; a Signal Processing module that extracts relevant ECoG features and translates them into output signals; an Application module that delivers stimuli and feedback to the subject; and the Operator module that provides a graphical interface to the investigator.A number of different experiments may be conducted with any given patient. The priority of experiments will be determined by the location of the particular patient''s electrodes. However, we usually begin our experimentation using the SIGFRIED (SIGnal modeling For Realtime Identification and Event Detection) mapping method, which detects and displays significant task-related activity in real time. The resulting functional map allows us to further tailor subsequent experimental protocols and may also prove as a useful starting point for traditional mapping by electrocortical stimulation (ECS).Although ECS mapping remains the gold standard for predicting the clinical outcome of resection, the process of ECS mapping is time consuming and also has other problems, such as after-discharges or seizures. Thus, a passive functional mapping technique may prove valuable in providing an initial estimate of the locus of eloquent cortex, which may then be confirmed and refined by ECS. The results from our passive SIGFRIED mapping technique have been shown to exhibit substantial concurrence with the results derived using ECS mapping10.The protocol described in this paper establishes a general methodology for gathering human ECoG data, before proceeding to illustrate how experiments can be initiated using the BCI2000 software platform. Finally, as a specific example, we describe how to perform passive functional mapping using the BCI2000-based SIGFRIED system.  相似文献   
24.

Background

Breast cancer in young women tends to have a natural history of aggressive disease for which rates of recurrence are higher than in breast cancers detected later in life. Little is known about the genetic pathways that underlie early-onset breast cancer. Here we report the discovery of DEAR1 (ductal epithelium–associated RING Chromosome 1), a novel gene encoding a member of the TRIM (tripartite motif) subfamily of RING finger proteins, and provide evidence for its role as a dominant regulator of acinar morphogenesis in the mammary gland and as an independent predictor of local recurrence-free survival in early-onset breast cancer.

Methods and Findings

Suppression subtractive hybridization identified DEAR1 as a novel gene mapping to a region of high-frequency loss of heterozygosity (LOH) in a number of histologically diverse human cancers within Chromosome 1p35.1. In the breast epithelium, DEAR1 expression is limited to the ductal and glandular epithelium and is down-regulated in transition to ductal carcinoma in situ (DCIS), an early histologic stage in breast tumorigenesis. DEAR1 missense mutations and homozygous deletion (HD) were discovered in breast cancer cell lines and tumor samples. Introduction of the DEAR1 wild type and not the missense mutant alleles to complement a mutation in a breast cancer cell line, derived from a 36-year-old female with invasive breast cancer, initiated acinar morphogenesis in three-dimensional (3D) basement membrane culture and restored tissue architecture reminiscent of normal acinar structures in the mammary gland in vivo. Stable knockdown of DEAR1 in immortalized human mammary epithelial cells (HMECs) recapitulated the growth in 3D culture of breast cancer cell lines containing mutated DEAR1, in that shDEAR1 clones demonstrated disruption of tissue architecture, loss of apical basal polarity, diffuse apoptosis, and failure of lumen formation. Furthermore, immunohistochemical staining of a tissue microarray from a cohort of 123 young female breast cancer patients with a 20-year follow-up indicated that in early-onset breast cancer, DEAR1 expression serves as an independent predictor of local recurrence-free survival and correlates significantly with strong family history of breast cancer and the triple-negative phenotype (ER, PR, HER-2) of breast cancers with poor prognosis.

Conclusions

Our data provide compelling evidence for the genetic alteration and loss of expression of DEAR1 in breast cancer, for the functional role of DEAR1 in the dominant regulation of acinar morphogenesis in 3D culture, and for the potential utility of an immunohistochemical assay for DEAR1 expression as an independent prognostic marker for stratification of early-onset disease.  相似文献   
25.
Substituted polyaniline/chitosan (sPANI/Ch) composites were chemically synthesized in H2SO4 and CH3COOH synthesis media. Structural and physical properties of the composites were characterized by using FTIR, SEM, TGA, UV–vis, XRD techniques, and conductivity measurements. The effect of synthesis media on morphology, thermal stability, conductivity, and crystalline properties was investigated. Chemical interactions between substituted polyanilines and chitosan were explained using FTIR spectra results. The different morphological surfaces were observed in SEM images of the composites. The size of the substituted polyaniline/chitosan (sPANI/Ch) composites was in nanoscale, and the composites synthesized in acetic acid media showed smaller structures than those of H2SO4 media and pure chitosan. It was interpreted from XRD results that the composites have amorphous structure and the PNEANI/Ch–CH3COOH composite has the highest crystallinity.  相似文献   
26.
Dagci T  Sengul G  Keser A  Onal A 《Life sciences》2011,88(17-18):746-752
AimsThe aim of this study is to determine the role of nitric oxide (NO) in neuropathic pain and the effect of embryonic neural stem cell (ENSC) transplantation on NO content in rat spinal cord neurons following spinal cord injury (SCI).Main methodsNinety adult male Sprague–Dawley rats were divided into 3 groups (n = 30, each): control (laminectomy), SCI (hemisection at T12–T13 segments) and SCI + ENSC. Each group was further divided into sub-groups (n = 5 each) based on the treatment substance (L-NAME, 75 mg/kg/i.p.; l-arginine, 225 mg/kg/i.p.; physiological saline, SF) and duration (2 h for acute and 28 days for chronic groups). Pain was assessed by tail flick and Randall–Selitto tests. Fos immunohistochemistry and NADPH-d histochemistry were performed in segments 2 cm rostral and caudal to SCI.Key findingsTail-flick latency time increased in both acute and chronic L-NAME groups and increased in acute and decreased in chronic l-arginine groups. The number of Fos (+) neurons decreased in acute and chronic L-NAME and decreased in acute l-arginine groups. Following ENSC, Fos (+) neurons did not change in acute L-NAME but decreased in the chronic L-NAME groups, and decreased in both acute and chronic l-arginine groups. NADPH-d (+) neurons decreased in acute L-NAME and increased in l-arginine groups with and without ENSC transplantation.SignificanceThis study confirms the role of NO in neuropathic pain and shows an improvement following ENSC transplantation in the acute phase, observed as a decrease in Fos(+) and NADPH-d (+) neurons in spinal cord segments rostral and caudal to injury.  相似文献   
27.
Classical homocystinuria is the most commonly inherited disorder of sulfur metabolism, caused by the genetic alterations in human cystathionine beta-synthase (CBS) gene. In this study, we present comprehensive clinical findings and the genetic basis of homocystinuria in a cohort of Turkish patients. Excluding some CBS mutations, detailed genotype–phenotype correlation for different CBS mutations has not been established in literature. We aimed to make clinical subgroups according to main clinical symptoms and discussed these data together with mutational analysis results from our patients. Totally, 16 different mutations were identified; twelve of which had already been reported, and four are novel (p.N93Y, p.L251P, p.D281V and c.829−2A>T). The probands were classified into three major groups according to the clinical symptoms caused by these mutations. A psychomotor delay was the most common diagnostic symptom (n = 12, 46.2% neurological presentation), followed by thromboembolic events (n = 6, 23.1% vascular presentation) and lens ectopia, myopia or marfanoid features (n = 5, 19.2% connective tissue presentation). Pyridoxine responsiveness was 7.7%; however, with partial responsive probands, the ratio was 53.9%.  相似文献   
28.
29.

Background

Metabolic syndrome (MetS) is a prevalent risk factor for cardiac dysfunction. Although SGLT2-inhibitors have important cardioprotective effects in hyperglycemia, their underlying mechanisms are complex and not completely understood. Therefore, we examined mechanisms of a SGLT2-inhibitor dapagliflozin (DAPA)-related cardioprotection in overweight insulin-resistant MetS-rats comparison with insulin (INSU), behind its glucose-lowering effect.

Methods

A 28-week high-carbohydrate diet-induced MetS-rats received DAPA (5 mg/kg), INSU (0.15 mg/kg) or vehicle for 2 weeks. To validate MetS-induction, we monitored all animals weekly by measuring body weight, blood glucose and HOMO-IR index, electrocardiograms, heart rate, systolic and diastolic pressures.

Results

DAPA-treatment of MetS-rats significantly augmented the increased blood pressure, prolonged Q–R interval, and low heart rate with depressed left ventricular function and relaxation of the aorta. Prolonged-action potentials were preserved with DAPA-treatment, more prominently than INSU-treatment, at most, through the augmentation in depressed voltage-gated K+-channel currents. DAPA, more prominently than INSU-treatment, preserved the depolarized mitochondrial membrane potential, and altered mitochondrial protein levels such as Mfn-1, Mfn-2, and Fis-1 as well as provided significant augmentation in cytosolic Ca2+-homeostasis. Furthermore, DAPA also induced significant augmentation in voltage-gated Na+-currents and intracellular pH, and the cellular levels of increased oxidative stress, protein-thiol oxidation and ADP/ATP ratio in cardiomyocytes from MetS rats. Moreover, DAPA-treatment normalized the increases in the mRNA level of SGLT2 in MetS-rat heart.

Conclusions

Overall, our data provided a new insight into DAPA-associated cardioprotection in MetS rats, including suppression of prolonged ventricular-repolarization through augmentation of mitochondrial function and oxidative stress followed by improvement of fusion–fission proteins, out of its glucose-lowering effect.
  相似文献   
30.
Substituted polyaniline/chitosan(PANIs/Ch) composites were chemically synthesized by using ammonium peroxydisulfate as oxidant and characterized by measurements of conductivity, FTIR, UV–vis, SEM and TGA techniques. FTIR spectra of the composites revealed that there is a strong interaction between substituted polyanilines and chitosan. Among the substituted polyaniline/chitosan composites synthesized, poly(N-ethylaniline)/chitosan PNEANI/Ch has the highest conductivity with a value of 1.68 × 10?4 S/cm. The P2EANI/Ch composite exhibited higher thermal stability than the other composites. SEM images of the composites showed an agglomerated granular morphology of substituted polyaniline particles coated on the surface of chitosan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号