首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   21篇
  2023年   9篇
  2022年   2篇
  2021年   20篇
  2020年   9篇
  2019年   10篇
  2018年   11篇
  2017年   8篇
  2016年   18篇
  2015年   20篇
  2014年   25篇
  2013年   29篇
  2012年   31篇
  2011年   38篇
  2010年   27篇
  2009年   18篇
  2008年   29篇
  2007年   22篇
  2006年   28篇
  2005年   26篇
  2004年   16篇
  2003年   12篇
  2002年   4篇
  2001年   2篇
  2000年   6篇
  1999年   5篇
  1998年   1篇
  1997年   4篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1980年   1篇
  1967年   1篇
排序方式: 共有439条查询结果,搜索用时 484 毫秒
81.
Telomeres are specialized structures at chromosome ends that are thought to function as buffers against chromosome fusion. Several studies suggest that telomere shortening may render chromosomes fusigenic. We used a novel quantitative fluorescence in situ hybridization procedure to estimate telomere length in individual mammalian chromosomes, and G-banding and chromosome painting techniques to determine chromosome fusigenic potential. All analysed Chinese hamster and mouse cell lines exhibited shorter telomeres at short chromosome arms than at long chromosome arms. However, no clear link between short telomeres and chromosome fusigenic potential was observed, i.e. frequencies of telomeric associations were higher in cell lines exhibiting longer telomeres. We speculate that chromosome fusigenic potential in mammalian cell lines may be determined not only by telomere length but also by the status of telomere chromatin structure. This is supported by the observed presence of chromatin filaments linking telomeres in Chinese hamster chromosomes and of multibranched chromosomes oriented end-to-end in the murine severe combined immunodeficient (SCID) cell line. Multibranched chromosomes are the hallmark of the human ICF (Immune deficiency, Centromeric instability, Facial abnormalities) syndrome, characterized by alterations in heterochromatin structure. Received: 13 June 1997; in revised form: 3 August 1997 / Accepted: 4 August 1997  相似文献   
82.
Sesame (Sesamum indicum L. syn. Sesamum orientale L.) is considered to be the first oil seed crop known to man. Despite its versatile use as an oil seed and a leafy vegetable, sesame is a neglected crop and has not been a subject of molecular genetic research until the last decade. There is thus limited knowledge regarding genome-specific molecular markers that are indispensible for germplasm enhancement, gene identification, and marker-assisted breeding in sesame. In this study, we employed a genotyping by sequencing (GBS) approach to a sesame recombinant inbred line (RIL) population for high-throughput single nucleotide polymorphism (SNP) identification and genotyping. A total of 15,521 SNPs were identified with 14,786 SNPs (95.26 %) located along sesame genome assembly pseudomolecules. By incorporating sesame-specific simple sequence repeat (SSR) markers developed in our previous work, 230.73 megabases (99 %) of sequence from the genome assembly were saturated with markers. This large number of markers will be available for sesame geneticists as a resource for candidate polymorphisms located along the physical chromosomes of sesame. Defining SNP loci in genome assembly sequences provides the flexibility to utilize any genotyping strategy to survey any sesame population. SNPs selected through a high stringency filtering protocol (770 SNPs) for improved map accuracy were used in conjunction with SSR markers (50 SSRs) in linkage analysis, resulting in 13 linkage groups that encompass a total genetic distance of 914 cM with 432 markers (420 SNPs, 12 SSRs). The genetic linkage map constitutes the basis for future work that will involve quantitative trait locus (QTL) analyses of metabolic and agronomic traits in the segregating RIL population.  相似文献   
83.
Butyl cyclohexyl phthalate (BCP) is frequently used in personal care products, medical and household applications. The aim of this study is therefore to evaluate possible cytotoxicity and genotoxicity of BCP using in vitro and in vivo assays. The in vitro cytotoxic effect of BCP was investigated on mouse fibroblastic cell line (L929 cells) by MTT assay. The result showed that BCP inhibits cell proliferation in a concentration-dependent manner (IC50 value = 0.29 µg/mL). For genotoxicity assessment, tested concentrations of BCP demonstrated mutagenic activity in the presence of S9 mix with the Salmonella strain TA100 in the Ames test. Results showed that BCP is a secondary mutagenic substance even in low concentrations. The data obtained from 28-days repeated toxicity tests on mice revealed that BCP caused abnormalities of chromosome number, in a dose-dependent manner. Additionally, DNA damage, particularly DNA strand breaks, was assessed by Comet assay. The test result shows that BCP seemed to have genotoxic potential at a high level of exposure.  相似文献   
84.
85.
The chemical composition of the essential oils isolated by hydrodistillation from the fruits of four selected Myrtus communis L. genotypes from Turkey was characterized by GC‐FID and GC/MS analyses. 1,8‐Cineole (29.20–31.40%), linalool (15.67–19.13%), α‐terpineol (8.40–18.43%), α‐pinene (6.04–20.71%), and geranyl acetate (3.98–7.54%) were found to be the major constituents of the fruit essential oils of all M. communis genotypes investigated. The oils were characterized by high amounts of oxygenated monoterpenes, representing 73.02–83.83% of the total oil compositions. The results of the fungal growth inhibition assays showed that the oils inhibited the growth of 19 phytopathogenic fungi. However, their antifungal activity was generally lower than that of the commercial pesticide benomyl. The herbicidal effects of the oils on the seed germination and seedling growth of Amaranthus retroflexus L., Chenopodium album L., Cirsium arvense (L.) Scop ., Lactuca serriola L., and Rumex crispus L. were also determined. The oils completely or partly inhibited the seed germinations and seedling growths of the plants. The findings of the present study suggest that the M. communis essential oils might have potential to be used as natural herbicides as well as fungicides.  相似文献   
86.
87.
Sensory feedback is essential for acquiring and maintaining complex motor behaviors, including birdsong. In zebra finches, auditory feedback reaches the song control circuits primarily through the nucleus interfacialis nidopalii (Nif), which provides excitatory input to HVC (proper name)—a premotor region essential for the production of learned vocalizations. Despite being one of the major inputs to the song control pathway, the role of Nif in generating vocalizations is not well understood. To address this, we transiently inactivated Nif in late juvenile zebra finches. Upon Nif inactivation (in both hemispheres or on one side only), birds went from singing stereotyped zebra finch song to uttering highly variable and unstructured vocalizations resembling sub‐song, an early juvenile song form driven by a basal ganglia circuit. Simultaneously inactivating Nif and LMAN (lateral magnocellular nucleus of the anterior nidopallium), the output nucleus of a basal ganglia circuit, inhibited song production altogether. These results suggest that Nif is required for generating the premotor drive for song. Permanent Nif lesions, in contrast, have only transient effects on vocal production, with song recovering within a day. The sensorimotor nucleus Nif thus produces a premotor drive to the motor pathway that is acutely required for generating learned vocalizations, but once permanently removed, the song system can compensate for its absence. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1213–1225, 2016  相似文献   
88.
Composition of the synaptic PSD-95 complex   总被引:2,自引:0,他引:2  
Postsynaptic density protein 95 (PSD-95), a specialized scaffold protein with multiple protein interaction domains, forms the backbone of an extensive postsynaptic protein complex that organizes receptors and signal transduction molecules at the synaptic contact zone. Large, detergent-insoluble PSD-95-based postsynaptic complexes can be affinity-purified from conventional PSD fractions using magnetic beads coated with a PSD-95 antibody. In the present study purified PSD-95 complexes were analyzed by LC/MS/MS. A semiquantitative measure of the relative abundances of proteins in the purified PSD-95 complexes and the parent PSD fraction was estimated based on the cumulative ion current intensities of corresponding peptides. The affinity-purified preparation was largely depleted of presynaptic proteins, spectrin, intermediate filaments, and other contaminants prominent in the parent PSD fraction. We identified 525 of the proteins previously reported in parent PSD fractions, but only 288 of these were detected after affinity purification. We discuss 26 proteins that are major components in the PSD-95 complex based upon abundance ranking and affinity co-purification with PSD-95. This subset represents a minimal list of constituent proteins of the PSD-95 complex and includes, in addition to the specialized scaffolds and N-methyl-d-aspartate (NMDA) receptors, an abundance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, small G-protein regulators, cell adhesion molecules, and hypothetical proteins. The identification of two Arf regulators, BRAG1 and BRAG2b, as co-purifying components of the complex implies pivotal functions in spine plasticity such as the reorganization of the actin cytoskeleton and insertion and retrieval of proteins to and from the plasma membrane. Another co-purifying protein (Q8BZM2) with two sterile alpha motif domains may represent a novel structural core element of the PSD.  相似文献   
89.
90.
The asymmetrically dividing budding yeast relies upon the alignment of the mitotic spindle along the mother to daughter cell polarity axis for the fidelity of chromosome segregation during mitosis. In the case of spindle misalignment, a surveillance mechanism named the spindle position checkpoint (SPOC) prevents cells from exiting mitosis through the inhibition of the mitotic exit network (MEN). MEN is a signal transduction pathway that mediates mitotic exit through fully activation of the Cdk-counteracting phosphatase Cdc14. In this mini-review, we briefly describe the mechanisms leading to mitotic exit in budding yeast cells focusing on the control of MEN by the SPOC. In addition, we summarize the recent advances in the molecular understanding of SPOC regulation and discuss whether similar checkpoints may exist in higher eukaryotic cells that undergo asymmetric divisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号