首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   3篇
  202篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   7篇
  2012年   13篇
  2011年   11篇
  2010年   7篇
  2009年   7篇
  2008年   13篇
  2007年   14篇
  2006年   12篇
  2005年   17篇
  2004年   9篇
  2003年   14篇
  2002年   14篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1995年   1篇
  1993年   1篇
  1990年   3篇
  1985年   6篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
101.
Both experimental and clinical studies suggests that oxidative stress plays an important role in the pathogenesis of diabetes mellitus type 1 and type 2. Hyperglycaemia leads to free radical generation and causes neural degeneration. In the present study we investigated the possible neuroprotective effect of mexiletine against streptozotocin-induced hyperglycaemia in the rat brain and spinal cord.30 adult male Wistar rats were divided into three groups: control, diabetic, and diabetic-mexiletine treated group. Diabetes mellitus was induced by a single injection of streptozotocin (60 mg/kg body weight). Mexiletine (50 mg/kg) was injected intraperitoneally every day for six weeks. After 6 weeks the brain, brain stem and cervical spinal cord of the rats were removed and the hippocampus, cortex, cerebellum, brain stem and spinal cord were dissected for biochemical analysis (the level of Malondialdehide [MDA], Nitric Oxide [NO], Reduced Glutathione [GSH], and Xanthine Oxidase [XO] activity). MDA, XO and NO levels in the hippocampus, cortex, cerebellum, brain stem and spinal cord of the diabetic group increased significantly, when compared with control and mexiletine groups (P < 0.05). GSH levels in the hippocampus, cortex, cerebellum, brain stem and spinal cord of the diabetic group decreased significantly when compared with control and mexiletine groups (P < 0.05).This study demonstrates that mexiletine protects the neuronal tissue against the diabetic oxidative damage.  相似文献   
102.
103.
Small bowel motility was studied in rats at increasing (1-20 pmol/kg/min) intravenous doses of either glucagon-like peptide-1 (GLP-1) or glucagon-like peptide-2 (GLP-2) alone, or in combination in the fasted and fed state. There was a dose-dependent inhibitory action of GLP-1 on the migrating myoelectric complex (MMC), where the dose of 5 pmol/kg/min induced an increased MMC cycle length. No effect was seen with GLP-2 alone, but the combination of GLP-1 and GLP-2 induced a more pronounced inhibitory effect, with significant increase of the MMC cycle length from a dose of 2 pmol/kg/min. During fed motility, infusion of GLP-1 resulted in an inhibition of spiking activity compared to control. In contrast, infusion of GLP-2 only numerically increased spiking activity compared to control, while the combination of GLP-1 and GLP-2 resulted in no change compared to control. In summary, this study demonstrates an additive effect of peripheral administration of GLP-1 and GLP-2 on fasted small bowel motility. In the fed state, GLP-1 and GLP-2 seem to display counter-balancing effects on motility of the small intestine.  相似文献   
104.
105.
Mutated form (G52E) of diphtheria toxin (DT) CRM197 is an inactive and nontoxic enzyme. Here, we provided a molecular insight using comparative molecular dynamics (MD) simulations to clarify the influence of a single point mutation on overall protein and active-site loop. Post-processing MD analysis (i.e. stability, principal component analysis, hydrogen-bond occupancy, etc.) is carried out on both wild and mutated targets to investigate and to better understand the mechanistic differences of structural and dynamical properties on an atomic scale especially at nicotinamide adenine dinucleotide (NAD) binding site when a single mutation (G52E) happens at the DT. In addition, a docking simulation is performed for wild and mutated forms. The docking scoring analysis and docking poses results revealed that mutant form is not able to properly accommodate the NAD molecule.  相似文献   
106.
Jack bean urease (urea aminohydrolase, EC 3.5.1.5) was immobilized onto modified non-porous poly(ethylene glycol dimethacrylate/2-hydroxy ethylene methacrylate), (poly(EGDMA/HEMA)), microbeads prepared by suspension copolymerization for the potential use in hemoperfusion columns, not previously reported. The conditions of immobilization; enzyme concentration, medium pH, substrate and ethylene diamine tetra acetic acid (EDTA) presence in the immobilization medium in different concentrations, enzyme loading ratio, processing time and immobilization temperature were investigated for highest apparent activity. Immobilized enzyme retained 73% of its original activity for 75 days of repeated use with a deactivation constant kd = 3.72 x 10(-3) day(-1). A canned non-linear regression program was used to estimate the intrinsic kinetic parameters of immobilized enzyme with a low value of observable Thiele modulus (phi < 0.3) and these parameters were compared with those of free urease. The best-fit kinetic parameters of a Michaelis-Menten model were estimated as Vm = 3.318 x 10(-4) micromol/s mg bound enzyme protein, Km = 15.94 mM for immobilized, and Vm = 1.074 micromol NH3/s mg enzyme protein, Km = 14.49 mM for free urease. The drastic decrease in Vm value was attributed to steric effects, conformational changes in enzyme structure or denaturation of the enzyme during immobilization. Nevertheless, the change in Km value was insignificant for the unchanged affinity of the substrate with immobilization. For higher immobilized urease activity, smaller particle size and concentrated urease with higher specific activity could be used in the immobilization process.  相似文献   
107.

Background

Glioblastoma (GBM) develops resistance to the advances in chemotherapy leading to poor prognosis and life quality. Consequently, new treatment modalities are needed. Our aims were to investigate the effects of combined noscapine (NOS) and imatinib mesylate (IM) on human GBM in vitro and the role of midkine (MK) in this new combination treatment.

Methods

Monolayer and spheroid cultures of T98G human GBM cell line were used to evaluate the effects of IM (10 μM), Nos (10 μM) and their combination on cell proliferation and apoptotic indexes, cell cycle, the levels of antiapoptotic MK, MRP-1, p170, PFGFR-α, EGFR, bcl-2 proteins, apoptotic caspase-3 levels, morphology (SEM) and ultrastructure (TEM) for 72 hrs. Results were statistically analyzed using the Student's t-test.

Results

The combination group induced highest decrease in cell proliferation and apoptotic indexes, caspase-3 levels, MRP-1 and PDGFR-α levels. The decrease in p170 levels were lower than IM but higher that NOS. The highest increases were in EGFR, MK, bcl-2 and cAMP levels in the combination group. The G0+G1 cell cycle arrest at the end of 72nd hr was the lowest in the combination group. Apoptotic appearence was observed rarely both in the morphologic and ultrastructural evaluation of the combination group. In addition, autophagic vacuoles which were frequently observed in the IM group were observed rarely.

Conclusions

The combination of Nos with IM showed antagonist effect in T98G human GBM cells in vitro. This antagonist effect was correlated highly with MK levels. The effects of NOS on MRP-1, MK and receptor tyrosine kinase levels were firstly demonstrated in our report. In addition, we proposed that MK is one of the modulator in the switch of autophagy to cell death or survival/resistance.  相似文献   
108.
109.
110.
In this study, the combined use of the selectivity of metal chelate affinity chromatography with the capacity of epoxy supports to immobilize poly‐His‐tagged recombinant benzoylformate decarboxylase from Pseudomonas putida (BFD, E.C. 4.1.1.7) via covalent attachment is shown. This was achieved by designing tailor‐made magnetic chelate–epoxy supports. In order to selectively adsorb and then covalently immobilize the poly‐His‐tagged BFD, the epoxy groups (300 µmol epoxy groups/g support) and a very small density of Co2+‐chelate groups (38 µmol Co2+/g support) was introduced onto magnetic supports. That is, it was possible to accomplish, in a simple manner, the purification and covalent immobilization of a histidine‐tagged recombinant BFD. The magnetically responsive biocatalyst was tested to catalyze the carboligation reactions. The benzoin condensation reactions were performed with this simple and convenient heterogeneous biocatalyst and were comparable to that of a free‐enzyme‐catalyzed reaction. The enantiomeric excess (ee) of (R)‐benzoin was obtained at 99 ± 2% for the free enzyme and 96 ± 3% for the immobilized enzyme. To test the stability of the covalently immobilized enzyme, the immobilized enzyme was reused in five reaction cycles for the formation of chiral 2‐hydroxypropiophenone (2‐HPP) from benzaldehyde and acetaldehyde, and it retained 96% of its original activity after five reaction cycles. Chirality 27:635–642, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号