首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   706篇
  免费   52篇
  国内免费   1篇
  2024年   1篇
  2023年   10篇
  2022年   16篇
  2021年   50篇
  2020年   15篇
  2019年   25篇
  2018年   21篇
  2017年   15篇
  2016年   24篇
  2015年   34篇
  2014年   42篇
  2013年   60篇
  2012年   53篇
  2011年   47篇
  2010年   44篇
  2009年   25篇
  2008年   34篇
  2007年   50篇
  2006年   31篇
  2005年   23篇
  2004年   31篇
  2003年   17篇
  2002年   15篇
  2001年   10篇
  2000年   5篇
  1999年   6篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
排序方式: 共有759条查询结果,搜索用时 15 毫秒
31.
Predation influences prey diversity and productivity while it effectuates the flux and reallocation of organic nutrients into biomass at higher trophic levels. However, it is unknown how bacterivorous protists are influenced by the diversity of their bacterial prey. Using 456 microcosms, in which different bacterial mixtures with equal initial cell numbers were exposed to single or multiple predators (Tetrahymena sp., Poterioochromonas sp. and Acanthamoeba sp.), we showed that increasing prey richness enhanced production of single predators. The extent of the response depended, however, on predator identity. Bacterial prey richness had a stabilizing effect on predator performance in that it reduced variability in predator production. Further, prey richness tended to enhance predator evenness in the predation experiment including all three protists predators (multiple predation experiment). However, we also observed a negative relationship between prey richness and predator production in multiple predation experiments. Mathematical analysis of potential ecological mechanisms of positive predator diversity—functioning relationships revealed predator complementarity as a factor responsible for both enhanced predator production and prey reduction. We suggest that the diversity at both trophic levels interactively determines protistan performance and might have implications in microbial ecosystem processes and services.  相似文献   
32.

Background

India has the highest number of HIV infected persons in the world after South Africa. Much HIV related behavioral, clinical and laboratory based research is ongoing in India. Yet little is known on Indian HIV patients'' knowledge of research, their processes of decision making and motives for participation. We aimed to explore these areas among HIV infected individuals to understand their reasons for participating in research.

Methodology/Principal Findings

This is a cross sectional survey among 173 HIV infected adults at a tertiary level hospital in Bangalore, India, done between October 2010 and January 2011. A pre-tested questionnaire was administered to the participants by trained research assistants to assess their knowledge regarding research, willingness to participate, decision making and determinants of participation. Participants were presented with five hypothetical HIV research studies. Each study had a different level of intervention and time commitment. Of respondents, 103(60%), said that research meant ‘to discover something new’ and 138(80%) were willing to participate in research. A third of the respondents were unaware of their right to refuse participation. Willingness to participate in research varied with level of intervention. It was the lowest for the hypothetical study involving sensitive questions followed by the hypothetical drug trial; and was the highest for the hypothetical cross sectional questionnaire based study (p<0.0015). Individual health benefits and altruism were the primary motives for participation in research and indicate the presence of therapeutic misconception. Women were less likely to make autonomous decisions for participation in interventional studies.

Conclusions/Significance

Despite a majority willing to participate, over a third of respondents did not have any knowledge of research or the voluntary nature of participation. This has ethical implications. Researchers need to focus on enabling potential research participants understand the concepts of research, promote autonomous decisions, especially by women and restrict therapeutic misconception.  相似文献   
33.
34.

Background

Lack of reliable predictive biomarkers is a stumbling block in the management of prostate cancer (CaP). Prostate-specific antigen (PSA) widely used in clinics has several caveats as a CaP biomarker. African-American CaP patients have poor prognosis than Caucasians, and notably the serum-PSA does not perform well in this group. Further, some men with low serum-PSA remain unnoticed for CaP until they develop disease. Thus, there is a need to identify a reliable diagnostic and predictive biomarker of CaP. Here, we show that BMI1 stem-cell protein is secretory and could be explored for biomarker use in CaP patients.

Methodology/Principal Findings

Semi-quantitative analysis of BMI1 was performed in prostatic tissues of TRAMP (autochthonous transgenic mouse model), human CaP patients, and in cell-based models representing normal and different CaP phenotypes in African-American and Caucasian men, by employing immunohistochemistry, immunoblotting and Slot-blotting. Quantitative analysis of BMI1 and PSA were performed in blood and culture-media of siRNA-transfected and non-transfected cells by employing ELISA. BMI1 protein is (i) secreted by CaP cells, (ii) increased in the apical region of epithelial cells and stromal region in prostatic tumors, and (iii) detected in human blood. BMI1 is detectable in blood of CaP patients in an order of increasing tumor stage, exhibit a positive correlation with serum-PSA and importantly is detectable in patients which exhibit low serum-PSA. The clinical significance of BMI1 as a biomarker could be ascertained from observation that CaP cells secrete this protein in higher levels than cells representative of benign prostatic hyperplasia (BPH).

Conclusions/Significance

BMI1 could be developed as a dual bio-marker (serum and biopsy) for the diagnosis and prognosis of CaP in Caucasian and African-American men. Though compelling these data warrant further investigation in a cohort of African-American patients.  相似文献   
35.

Objectives

HPV infection causes cervical cancer, yet information on prevalence and risk factors for HPV in Africa remain sparse. This study describes the prevalence of HPV genotypes and risk factors associated with HPV among young women ≤ 30 years of age in KwaZulu-Natal (KZN), South Africa.

Methods

Cervicovaginal lavage samples were tested for HPV genotypes in 224 women enrolled in a prospective cohort study. Clinical, behavioural and demographic data were collected. We measured prevalence of HPV genotypes and using logistic regression, examined for factors associated with HPV.

Results

Median age of participants was 21 years [interquartile range (IQR):18–23]. The overall prevalence of HPV was 76.3% (171/224) with multiple and single genotypes prevalent in 56.3% and 20.1% of women respectively. Proportion of women with high-risk genotypes (16, 18, 31, 33, 35, 39, 45, 51, 52, 56 and 58) was 54.5%. Women not living with their partner [adjusted odds ratio (aOR)] = 3.42 95% CI1.22–9.60; p = 0.019), was significantly associated with HPV infection and high-risk HPV genotype infection.

Conclusion

The high burden of HPV and associated risk behaviours highlight the need to intensify behavioural interventions to prevent HPV acquisition in young women. The large scale delivery of HPV vaccine should be prioritised to prevent HPV acquisition and reduce HPV-related morbidity.  相似文献   
36.
Coinheritance of germline mutation in cyclin‐dependent kinase inhibitor 2A (CDKN2A) and loss‐of‐function (LOF) melanocortin 1 receptor (MC1R) variants is clinically associated with exaggerated risk for melanoma. To understand the combined impact of these mutations, we established and tested primary human melanocyte cultures from different CDKN2A mutation carriers, expressing either wild‐type MC1R or MC1RLOF variant(s). These cultures expressed the CDKN2A product p16 (INK4A) and functional MC1R. Except for 32ins24 mutant melanocytes, the remaining cultures showed no detectable aberrations in proliferation or capacity for replicative senescence. Additionally, the latter cultures responded normally to ultraviolet radiation (UV) by cell cycle arrest, JNK, p38, and p53 activation, hydrogen peroxide generation, and repair of DNA photoproducts. We propose that malignant transformation of melanocytes expressing CDKN2A mutation and MC1RLOF allele(s) requires acquisition of somatic mutations facilitated by MC1R genotype or aberrant microenvironment due to CDKN2A mutation in keratinocytes and fibroblasts.  相似文献   
37.
Helophytic plants contribute significantly in phytoremediation of a variety of pollutants due to their physiological or biochemical mechanisms. Phenol, which is reported to have negative/deleterious effects on plant metabolism at concentrations higher than 500 mg/L, remains hard to be removed from the environmental compartments using conventional phytoremediation procedures. The present study aims to investigate the feasibility of using P. australis (a helophytic grass) in combination with three bacterial strains namely Acinetobacter lwofii ACRH76, Bacillus cereus LORH97, and Pseudomonas sp. LCRH90, in a floating treatment wetland (FTW) for the removal of phenol from contaminated water. The strains were screened based on their phenol degrading and plant growth promoting activities. We found that inoculated bacteria were able to colonize in the roots and shoots of P. australis, suggesting their potential role in the successful removal of phenol from the contaminated water. Pseudomonas sp. LCRH90 dominated the bacterial community structure followed by A. lowfii ACRH76 and B. cereus LORH97. The removal rate was significantly high when compared with the individual partners, i.e., plants and bacteria separately. The plant biomass, which was drastically reduced in the presence of phenol, recovered significantly with the inoculation of bacterial consortia. Likewise, highest reduction in chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total organic carbon (TOC) is achieved when both plants and bacteria were employed. The study, therefore, suggests that P. australis in combination with efficient bacteria can be a suitable choice to FTWs for phenol-degradation in water.  相似文献   
38.
ObjectiveMaize is an important crop for fodder, food and feed industry. The present study explores the plant-microbe interactions as alternative eco-friendly sustainable strategies to enhance the crop yield.MethodologyBacterial diversity was studied in the rhizosphere of maize by culture-dependent and culture-independent techniques by soil sampling, extraction of DNA, amplification of gene of interest, cloning of desired fragment and library construction.ResultsCulturable bacteria were identified as Achromobacter, Agrobacterium, Azospirillum, Bacillus, Brevibacillus, Bosea, Enterobacter, Microbacterium, Pseudomonas, Rhodococcus, Stenotrophomonas and Xanthomonas genera. For culture-independent approach, clone library of 16S ribosomal RNA gene was assembled and 100 randomly selected clones were sequenced. Majority of the sequences were related to Firmicutes (17%), Acidobacteria (16%), Actinobacteria (17%), Alpha-Proteobacteria (7%), Delta-proteobacteria (4.2%) and Gemmatimonadetes (4.2%) However, some of the sequences (30%) were novel that showed no homologies to phyla of cultured bacteria in the database. Diversity of diazotrophic bacteria in the rhizosphere investigated by analysis of PCR-amplified nifH gene sequence that revealed abundance of sequences belonging to genera Azoarcus (25%), Aeromonas (10%), Pseudomonas (10%). The diazotrophic genera Azotobacter, Agrobacterium and Zoogloea related nifH sequences were also detected but no sequence related to Azospirillum was found showing biasness of the growth medium rather than relative abundance of diazotrophs in the rhizosphere.ConclusionThe study provides a foundation for future research on focussed isolation of the Azoarcus and other diazotrophs found in higher abundance in the rhizosphere.  相似文献   
39.
ObjectivePhosphorous is an essential micronutrient of plants and involved in critical biological functions. In nature, phosphorous is mostly present in immobilized inorganic mineral and in the fixed organic form including phytic acid and phosphoesteric compounds. However, the bioavailability of bound phosphorous could be enhanced by the use of phosphate solubilizing microorganisms such as bacteria and fungi. The phytases are widespread in an environment and have been isolated from different sources comprising bacteria and fungi.MethodologyIn current studies, we show the successful use of gamma rays and EMS (Ethyl Methane Sulphonate) mutagenesis for enhanced activity of phytases in a fungal strain Sporotrichum thermophile.ResultsWe report an improved strain ST2 that could produce a clear halo zone around the colony, up to 24 mm. The maximum enzymatic activity was found of 382 U/mL on pH 5.5. However, the phytase activity was improved to 387 U/ml at 45 °C. We also report that the mutants produced through EMS showed the greater potential for phytase production.ConclusionThe current study highlights the potential of EMS mutagenesis for strain improvement over physical mutagens.  相似文献   
40.
Tyrosine phosphorylation-dependence of caveolae-mediated endocytosis   总被引:2,自引:0,他引:2  
Caveolae are flask-shaped plasma membrane invaginations that mediate endocytosis and transcytosis of plasma macromolecules, such as albumin, insulin and low-density lipoprotein (LDL), as well as certain viruses, bacteria and bacterial toxins. Caveolae-mediated transcytosis of macromolecules is critical for maintaining vascular homeostasis by regulating the oncotic pressure gradient and tissue delivery of drugs, vitamins, lipids and ions. Entrapment of cargo within caveolae induces activation of signalling cascades leading to caveolae fission and internalization. Activation of Src tyrosine kinase is an early and essential step that triggers detachment of loaded caveolae from the plasma membrane. In this review, we examine how Src-mediated phosphorylation regulates caveolae-mediated transport by orchestrating the localization and activity of essential proteins of the endocytic machinery to regulate caveolae formation and fission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号