首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   18篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   17篇
  2014年   15篇
  2013年   14篇
  2012年   16篇
  2011年   19篇
  2010年   12篇
  2009年   10篇
  2008年   20篇
  2007年   15篇
  2006年   4篇
  2005年   10篇
  2004年   20篇
  2003年   12篇
  2002年   12篇
  2000年   1篇
  1998年   2篇
  1997年   4篇
  1995年   1篇
  1992年   1篇
排序方式: 共有227条查询结果,搜索用时 437 毫秒
181.
Highlights? Identification of a niche for germline and somatic stem cells in a basal chordate ? Stem cells repeatedly migrate between aged or damaged niches into developing niches  相似文献   
182.
Sharabi O  Dekel A  Shifman JM 《Proteins》2011,79(5):1487-1498
Computational prediction of stabilizing mutations into monomeric proteins has become an almost ordinary task. Yet, computational stabilization of protein–protein complexes remains a challenge. Design of protein–protein interactions (PPIs) is impeded by the absence of an energy function that could reliably reproduce all favorable interactions between the binding partners. In this work, we present three energy functions: one function that was trained on monomeric proteins, while the other two were optimized by different techniques to predict side-chain conformations in a dataset of PPIs. The performances of these energy functions are evaluated in three different tasks related to design of PPIs: predicting side-chain conformations in PPIs, recovering native binding-interface sequences, and predicting changes in free energy of binding due to mutations. Our findings show that both functions optimized on side-chain repacking in PPIs are more suitable for PPI design compared to the function trained on monomeric proteins. Yet, no function performs best at all three tasks. Comparison of the three energy functions and their performances revealed that (1) burial of polar atoms should not be penalized significantly in PPI design as in single-protein design and (2) contribution of electrostatic interactions should be increased several-fold when switching from single-protein to PPI design. In addition, the use of a softer van der Waals potential is beneficial in cases when backbone flexibility is important. All things considered, we define an energy function that captures most of the nuances of the binding energetics and hence, should be used in future for design of PPIs.  相似文献   
183.
Thiram-induced tibial dyschondroplasia (TD) and vitamin-D deficiency rickets are avian bone disorders of different etiologies characterized by abnormal chondrocyte differentiation, enlarged and unvascularized growth plates, and lameness. Heat-shock protein 90 (Hsp90) is a proangiogenic factor in mammalian tissues and in tumors; therefore, Hsp90 inhibitors were developed as antiangiogenic factors. In this study, we evaluated the association between Hsp90, hypoxia, and angiogenesis in the chick growth plate. Administration of the Hsp90 inhibitor to TD- and rickets-afflicted chicks at the time of induction resulted in reduction in growth-plate size and, contrary to its antiangiogenic effect in tumors, a major invasion of blood vessels occurred in the growth plates. This was the result of upregulation of the VEGF receptor Flk-1, the major rate-limiting factor of vascularization in TD and rickets. In addition, the abnormal chondrocyte differentiation, as characterized by collagen type II expression and alkaline phosphatase activity, and the changes in hypoxia-inducible factor-1α (HIF-1α) in both disorders were restored. All these changes resulted in prevention of lameness. Inhibition of Hsp90 activity reduced growth-plate size, increased vascularization, and mitigated lameness also in TD chicks with established lesions. In summary, this is the first reported demonstration of involvement of Hsp90 in chondrocyte differentiation and growth-plate vascularization. In contrast to the antiangiogenic effect of Hsp90 inhibitors observed in mammals, inhibition of Hsp90 activity in the unvascularized TD- and rickets-afflicted chicks resulted in activation of the angiogenic switch and reinstated normal growth-plate morphology.  相似文献   
184.
In plants, γ-aminobutyric acid (GABA) accumulates in the cytosol in response to a variety of stresses. GABA is transported into mitochondria, where it is catabolized into TCA cycle or other intermediates. Although there is circumstantial evidence for mitochondrial GABA transporters in eukaryotes, none have yet been identified. Described here is an Arabidopsis protein similar in sequence and topology to unicellular GABA transporters. The expression of this protein complements a GABA-transport-deficient yeast mutant. Thus the protein was termed AtGABP to indicate GABA-permease activity. In vivo localization of GABP fused to GFP and immunobloting of subcellular fractions demonstrate its mitochondrial localization. Direct [(3) H]GABA uptake measurements into isolated mitochondria revealed impaired uptake into mitochondria of a gabp mutant compared with wild-type (WT) mitochondria, implicating AtGABP as a major mitochondrial GABA carrier. Measurements of CO(2) release, derived from radiolabeled substrates in whole seedlings and in isolated mitochondria, demonstrate impaired GABA-derived input into the TCA cycle, and a compensatory increase in TCA cycle activity in gabp mutants. Finally, growth abnormalities of gabp mutants under limited carbon availability on artificial media, and in soil under low light intensity, combined with their metabolite profiles, suggest an important role for AtGABP in primary carbon metabolism and plant growth. Thus, AtGABP-mediated transport of GABA from the cytosol into mitochondria is important to ensure proper GABA-mediated respiration and carbon metabolism. This function is particularly essential for plant growth under conditions of limited carbon.  相似文献   
185.
Constitutive activation or overactivation of Ras signaling pathways contributes to epithelial tumorigenesis in several ways, one of which is cytoplasmic mislocalization of the cyclin-dependent kinase inhibitor p27Kip1 (p27). We previously showed that such an effect can be mediated by activation of the Ral-GEF pathway by oncogenic N-Ras. However, the mechanism(s) leading to p27 cytoplasmic accumulation downstream of activated Ral remained unknown. Here, we report a dual regulation of p27 cellular localization by Ral downstream pathways, based on opposing effects via the Ral effectors RalBP1 and phospholipase D1 (PLD1). Because RalA and RalB are equally effective in mislocalizing both murine and human p27, we focus on RalA and murine p27, which lacks the Thr-157 phosphorylation site of human p27. In experiments based on specific RalA and p27 mutants, complemented with short hairpin RNA–mediated knockdown of Ral downstream signaling components, we show that activation of RalBP1 induces cytoplasmic accumulation of p27 and that this event requires p27 Ser-10 phosphorylation by protein kinase B/Akt. Of note, activation of PLD1 counteracts this effect in a Ser-10–independent manner. The physiological relevance of the modulation of p27 localization by Ral is demonstrated by the ability of Ral-mediated activation of the RalBP1 pathway to abrogate transforming growth factor-β–mediated growth arrest in epithelial cells.  相似文献   
186.
Stable Nitroxide Radicals Protect Lipid Acyl Chains From Radiation Damage   总被引:3,自引:0,他引:3  
The present study focused on protective activity of two six-membered-ring nitroxide radicals, 2,2,6,6-tetramethylpiperidine-1-oxyl (Tempo) and 4-hydroxy-Tempo (Tempol), against radiation damage to acyl chain residues of egg phosphatidylcholine (EPC) of small unilamellar vesicles (SUV). SUV were -irradiated (10–12 kGy) under air at ambient temperature in the absence and presence of nitroxides. Acyl chain composition of the phospholipids before and after irradiation was determined by gas chromatography. Both Tempo and Tempol effectively and similarly protected the acyl chains of EPC SUV, including the highly sensitive polyunsaturated acyl chains, C20:4, C22:5, and C22:6. The conclusions of the study are: (a) The higher the degree of unsaturation in the acyl chain, the greater is the degradation caused by irradiation. (b) The fully saturated fatty acids palmitic acid (C16) and stearic acid (C18) showed no significant change in their levels. (c) Both Tempo and Tempol provided similar protection to acyl chain residues. (d) Nitroxides' lipid-bilayer/aqueous distribution is not validly represented by their n-octanol/saline partition coefficient. (e) The lipid-bilayer/aqueous partition coefficient of Tempo and Tempol cannot be correlated with their protective effect. (f) The nitroxides appear to protect via a catalytic mode. Unlike common antioxidants, such as -tocopherol, which are consumed under irradiation and are, therefore, less effective against high radiation dose, nitroxide radicals are restored and terminate radical chain reactions in a catalytic manner. Furthermore, nitroxides neither yield secondary radicals upon their reaction with radicals nor act as prooxidants. Not only are nitroxides self-replenished, but also their reduction products are effective antioxidants. Therefore, the use of nitroxides offers a powerful strategy to protect liposomes, membranes, and other lipid-based assemblies from radiation damage. © 1997 Elsevier Science Inc.  相似文献   
187.
The spf-ash mutation in mice results in reduced hepatic and intestinal ornithine transcarbamylase. However, a reduction in enzyme activity only translates in reduced ureagenesis and hyperammonemia when an unbalanced nitrogen load is imposed. Six-week-old wild-type control and spf-ash mutant male mice from different genetic backgrounds (B6 and ICR) were infused intravenously with [(13)C(18)O]urea, l-[(15)N(2)]arginine, l-[5,5 D(2)]ornithine, l-[6-(13)C, 4,4,5,5, D(4)]citrulline, and l-[ring-D(5)]phenylalanine to investigate the interaction between genetic background and spf-ash mutation on ureagenesis, arginine metabolism, and nitric oxide production. ICR(spf-ash) mice maintained ureagenesis (5.5 +/- 0.3 mmol.kg(-1).h(-1)) and developed mild hyperammonemia (145 +/- 19 micromol/l) when an unbalanced nitrogen load was imposed; however, B6(spf-ash) mice became hyperammonemic (671 +/- 15 micromol/l) due to compromised ureagenesis (3.4 +/- 0.1 mmol.kg(-1).h(-1)). Ornithine supplementation restored ureagenesis and mitigated hyperammonemia. A reduction in citrulline entry rate was observed due to the mutation in both genetic backgrounds (wild-type: 128, spf-ash: 60; SE 4.0 micromol.kg(-1).h(-1)). Arginine entry rate was only reduced in B6(spf-ash) mice (B6(spf-ash): 332, ICR(spf-ash): 453; SE 20.6 micromol.kg(-1).h(-1)). Genetic background and mutation had an effect on nitric oxide production (B6: 3.4, B6(spf-ash): 2.8, ICR: 9.0, ICR(spf-ash): 4.6, SE 0.7 micromol.kg(-1).h(-1)). Protein breakdown was the main source of arginine during the postabsorptive state and was higher in ICR(spf-ash) than in B6(spf-ash) mice (phenylalanine entry rate 479 and 327, respectively; SE 18 micromol.kg(-1).h(-1)). Our results highlight the importance of the interaction between mutation and genetic background on ureagenesis, arginine metabolism, and nitric oxide production. These observations help explain the wide phenotypic variation of ornithine transcarbamylase deficiency in the human population.  相似文献   
188.
Regenerative medicine opens new avenues and promises towards more effective therapies for autoimmune disorders. Current therapeutic strategies for type I diabetes focus on three major directions, with distinct advantages and disadvantages: arrest of autoimmunity, islet transplantation and generation of neoislets. There is mounting evidence that candidate stem cells residing in the hematopoietic compartments participate in regeneration of pancreatic islets following chemical and autoimmune injury in vivo. The apparent major mechanisms include immunomodulation, revascularization, support of endogenous beta-cell regeneration and differentiation into insulin-producing cells. Review of the current evidence suggests that some divergent observations depend primarily on the experimental design, which both limits and accentuates developmental events. The flood of publications reporting negative results appears to reflect primarily suboptimal experimental conditions for differentiation of putative stem cells, rather than limited developmental plasticity. Stem cells modulate the course of autoimmune diabetes through multiple mechanisms, including de novo generation of units capable to sense, produce and secrete insulin. Therefore, the charged debate over controversies surrounding developmental plasticity should not impede attempts to design curative therapies for this disease.  相似文献   
189.
190.
ELG1 is a conserved gene with important roles in the maintenance of genome stability. Elg1''s activity prevents gross chromosomal rearrangements, maintains proper telomere length regulation, helps repairing DNA damage created by a number of genotoxins and participates in sister chromatid cohesion. Elg1 is evolutionarily conserved, and its Fanconi Anemia-related mammalian ortholog (also known as ATAD5) is embryonic lethal when lost in mice and acts as a tumor suppressor in mice and humans. Elg1 encodes a protein that forms an RFC-like complex that unloads the replicative clamp, PCNA, from DNA, mainly in its SUMOylated form. We have identified 2 different regions in yeast Elg1 that undergo phosphorylation. Phosphorylation of one of them, S112, is dependent on the ATR yeast ortholog, Mec1, and probably is a direct target of this kinase. We show that phosphorylation of Elg1 is important for its role at telomeres. Mutants unable to undergo phosphorylation suppress the DNA damage sensitivity of Δrad5 mutants, defective for an error-free post-replicational bypass pathway. This indicates a role of phosphorylation in the regulation of DNA repair. Our results open the way to investigate the mechanisms by which the activity of Elg1 is regulated during DNA replication and in response to DNA damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号