首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   18篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   17篇
  2014年   15篇
  2013年   14篇
  2012年   16篇
  2011年   19篇
  2010年   12篇
  2009年   10篇
  2008年   20篇
  2007年   15篇
  2006年   4篇
  2005年   10篇
  2004年   20篇
  2003年   12篇
  2002年   12篇
  2000年   1篇
  1998年   2篇
  1997年   4篇
  1995年   1篇
  1992年   1篇
排序方式: 共有227条查询结果,搜索用时 93 毫秒
171.
172.
Ontologies provide an important resource to integrate information. For developmental biology and comparative anatomy studies, ontologies of a species are used to formalize and annotate data that are related to anatomical structures, their lineage and timing of development. Here, we have constructed the first ontology for anatomy and asexual development (blastogenesis) of a bilaterian, the colonial tunicate Botryllus schlosseri. Tunicates, like Botryllus schlosseri, are non-vertebrates and the only chordate taxon species that reproduce both sexually and asexually. Their tadpole larval stage possesses structures characteristic of all chordates, i.e. a notochord, a dorsal neural tube, and gill slits. Larvae settle and metamorphose into individuals that are either solitary or colonial. The latter reproduce both sexually and asexually and these two reproductive modes lead to essentially the same adult body plan. The Botryllus schlosseri Ontology of Development and Anatomy (BODA) will facilitate the comparison between both types of development. BODA uses the rules defined by the Open Biomedical Ontologies Foundry. It is based on studies that investigate the anatomy, blastogenesis and regeneration of this organism. BODA features allow the users to easily search and identify anatomical structures in the colony, to define the developmental stage, and to follow the morphogenetic events of a tissue and/or organ of interest throughout asexual development. We invite the scientific community to use this resource as a reference for the anatomy and developmental ontology of B. schlosseri and encourage recommendations for updates and improvements.  相似文献   
173.
The Escherichia coli mazEF module is one of the most thoroughly studied toxin–antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. MazF is an endoribonuclease that leads to the inhibition of protein synthesis by cleaving mRNAs at ACA sequences. Here, using 2D-gels, we show that in E. coli, although MazF induction leads to the inhibition of the synthesis of most proteins, the synthesis of an exclusive group of proteins, mostly smaller than about 20 kDa, is still permitted. We identified some of those small proteins by mass spectrometry. By deleting the genes encoding those proteins from the E. coli chromosome, we showed that they were required for the death of most of the cellular population. Under the same experimental conditions, which induce mazEF-mediated cell death, other such proteins were found to be required for the survival of a small sub-population of cells. Thus, MazF appears to be a regulator that induces downstream pathways leading to death of most of the population and the continued survival of a small sub-population, which will likely become the nucleus of a new population when growth conditions become less stressful.  相似文献   
174.
Tyrosinase is a type 3 copper enzyme with great potential for production of commercially valuable diphenols from monophenols. However, the use of tyrosinase is limited by its further oxidation of diphenols to quinones. We recently determined the structure of the Bacillus megaterium tyrosinase revealing a residue, V218, which we proposed to take part in positioning of substrates within the active site. In the structure of catechol oxidase from Ipomoea batatas, the lack of monophenolase activity was attributed to the presence of F261 near CuA. Consequently, we engineered two variants, V218F and V218G. V218F was expected to have a decreased monophenolase activity, due to the bulky residue extending into the active site. Surprisingly, both V218F and V218G exhibited a 9- and 4.4-fold higher monophenolase/diphenolase activity ratio, respectively. X-ray structures of variant V218F display a flexibility of the phenylalanine residue along with an adjacent histidine, which we propose to be the source of the change in activity ratio.  相似文献   
175.
Biomechanics and Modeling in Mechanobiology - The altered biomechanical function of the knee following partial meniscectomy results in ongoing articular cartilage overload, which may lead to...  相似文献   
176.
Natural killer (NK) cells serve as a crucial first-line defense against tumors and virus-infected cells. We previously showed that lysis of influenza virus (IV)-infected cells is mediated by the interaction between the NK receptor, NKp46, and the IV hemagglutinin (HA) type 1 expressed by the infected cells. This interaction requires the presence of sialyl groups on the NKp46-T225 O-glycoforms. In the current study, we analyzed the O-glycan sequences that are imperative for the interaction between recombinant NKp46 (rNKp46) and IV H1N1 strains. We first showed that rNKp46 binding to IV H1N1 is not mediated by a glycoform unique to the Thr225 site. We then characterized the O-glycan sequences that mediate the interaction of rNKp46 and IV H1N1; we employed rNKp46s with dissimilar glycosylation patterns and IV H1N1 strains with different sialic acid α2,3 and α2,6 linkage preferences. The branched α2,3-sialylated O-glycoform Neu5NAcα2,3-Galβ1,4-GlcNAcβ1,6[Neu5NAcα2,3-Galβ1,3]GalNAc competently mediated the interaction of rNKp46 with IV H1N1, manifesting a preference for α2,3 linkage. In contrast, the linear α2,3-sialylated O-glycoform Neu5NAcα2,3-Galβ1,3-GalNAc was not correlated with enhanced interaction between rNKp46 and IV H1N1 or a preference for α2,3 linkage. The branched α2,3- and α2,6-sialylated O-glycoform Neu5NAcα2,3-Galβ1,3[Neu5NAcα2,6]GalNAc competently mediated the interaction of rNKp46 with IV H1N1, manifesting a preference for α2,6 linkage. Previous viral HA-binding-specificity studies were performed with glycopolymer conjugates, free synthetic sialyl oligosaccharides, and sialidase-treated cells. This study shed light on the O-glycan sequences involved in the interaction of glycoprotein and viral hemagglutinins and may help in the design of agents inhibitory to hemagglutinin for influenza treatment.Hemagglutinin (HA) is the receptor-binding and membrane fusion protein of influenza virus (IV), as well as the target for infectivity-neutralizing antibodies (27). Terminal sialic acids of glycoproteins and glycolipids are the cellular receptors for the IV HA (27). Two major linkages between sialic acid and the penultimate galactose residues of carbohydrate side chains are found in nature, Neu5NAcα(2,3)-Gal and Neu5NAcα(2,6)-Gal (27); different HAs have different recognition specificities for these linkages and the sugar backbone beneath (23, 26, 30). However, all of the HA-binding specificity studies were performed with glycopolymer conjugates, free synthetic sialyl oligosaccharides, and sialidase-treated cells (8, 10, 20, 25). This could be sufficient for the design of IV-inhibitory agents, and yet, it contributes only partially to the understanding of the interaction of IV HAs with glycoproteins and glycolipids. We aimed to further explore the exact glycoform sequences conjugated to a specific glycoprotein''s glycosylation site that is recognized by different IV strains.For this purpose, we took advantage of our findings on the interaction of natural cytotoxicity receptors (NCRs) and IV HAs (2, 3, 13, 18, 19, 22, 34). We showed that the NKp44 and NKp46 NCRs but not the NKp30 NCR interact with IV HAs. This interaction requires the sialylation of NKp44 and NKp46 oligosaccharides, and the binding of these NCRs to viral HA is required for the lysis of virus-infected cells by NK cells (3, 13, 18). NKp46 displays two putative O-linked glycosylation sites at Thr125 and Thr225 and one N-linked glycosylation site at Asn216. In order to determine the specific sugar-carrying residue that is important for the HA1 recognition, site-directed mutagenesis of the three residues was performed to carry the glycan modifications. Only when Thr225 was replaced was a sharp decrease in the enhanced binding to IV HA1 and IV H1N1-infected cells observed (2). Therefore, for the NKp46 receptor, the interaction with IV HA1 is restricted to Thr225, one of its three glycosylation sites (2).We already showed that producing recombinant NKp46 (rNKp46) in different cell lines resulted in dissimilar glycosylation patterns and had a strong effect on the binding to its ligands (11). Therefore, we analyzed the O-glycan patterns of rNKp46 produced from various cell lines and utilized the dissimilar glycosylation patterns to elucidate the NKp46 O-glycan sequences that mediate the interaction with IV H1N1 strains. To associate the results with the IV preference for sialic acid α2,3 and/or α2,6 linkages, we employed A/PR/8/34 (H1N1), A/NC/20/99 (H1N1), and A/Brisbane/59/2007 (H1N1) grown in either hen egg amnion or Madin-Darby canine kidney (MDCK) cells. Our results pointed to two branched O-glycan sequences that mediated the interaction of the NKp46 glycoprotein with IV H1N1 in correlation with the sialic acid linkage preference of the IV strain.  相似文献   
177.
178.
179.

Background

Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, attempts at expanding human islet cells in tissue culture result in loss of beta-cell phenotype. Using a lineage-tracing approach we provided evidence for massive proliferation of beta-cell-derived (BCD) cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT). Epigenetic analyses indicate that key beta-cell genes maintain open chromatin structure in expanded BCD cells, although they are not transcribed. Here we investigated whether BCD cells can be redifferentiated into beta-like cells.

Methodology/Principal Finding

Redifferentiation conditions were screened by following activation of an insulin-DsRed2 reporter gene. Redifferentiated cells were characterized for gene expression, insulin content and secretion assays, and presence of secretory vesicles by electron microscopy. BCD cells were induced to redifferentiate by a combination of soluble factors. The redifferentiated cells expressed beta-cell genes, stored insulin in typical secretory vesicles, and released it in response to glucose. The redifferentiation process involved mesenchymal-epithelial transition, as judged by changes in gene expression. Moreover, inhibition of the EMT effector SLUG (SNAI2) using shRNA resulted in stimulation of redifferentiation. Lineage-traced cells also gave rise at a low rate to cells expressing other islet hormones, suggesting transition of BCD cells through an islet progenitor-like stage during redifferentiation.

Conclusions/Significance

These findings demonstrate for the first time that expanded dedifferentiated beta cells can be induced to redifferentiate in culture. The findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for transplantation, as well as basic research, toxicology studies, and drug screening.  相似文献   
180.
We sequenced 11 germline exomes from five families with familial pancreatic cancer (FPC). One proband had a germline nonsense variant in ATM with somatic loss of the variant allele. Another proband had a nonsense variant in PALB2 with somatic loss of the variant allele. Both variants were absent in a relative with FPC. These findings question the causal mechanisms of ATM and PALB2 in these families and highlight challenges in identifying the causes of familial cancer syndromes using exome sequencing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号