首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
排序方式: 共有20条查询结果,搜索用时 93 毫秒
11.
12.
Abstract

The Cestrum genus is karyotypically exceptional in Solanaceae. It is characterised by a basic number x?=?8, a large chromosomal and genomic size, complex heterochromatin patterns, B-chromosomes (Bs) with particular heterochromatin and distribution of 18–5.8–26S and 5S rDNA. Cestrum nocturnum L. has a diploid number of 2n?=?16 plus a variable number of B-chromosomes. The aims of work was to analyse their numerical variation, structure and behaviour of C. nocturnum B-chromosomes by classical and molecular cytogenetics. The individuals analysed had 2n?=?16?+?0?13 B-chromosomes. All B-chromosomes were metacentric and smaller than A-chromosomes. The number of B-chromosomes showed a great variability between and within individuals, thereby denoting the occurrence of events that promote mitotic and meiotic instability. Cytogenetic techniques made it possible to observe that B-chromosomes are rich in heterochromatin, probably with AT- and GC-rich regions. In addition, molecular techniques allowed to detect homologous sequences of transposable element conserved domains of Ty1-Copia and Ty3-Gypsy superfamilies. These sequences were located by FISH in all B-chromosomes and some A-chromosomes. Our results showed that repetitive DNA could play an important role in chromosomal evolution as well as in the stability of B-chromosomes in C. nocturnum.  相似文献   
13.
A SELEX approach has been developed in order to select oligonucleotides that bind double-stranded DNA in the presence of a triplex-stabilizing agent, and was applied to a target sequence containing an oligopurine–oligopyrimidine stretch. After only seven rounds of selection, the process led to the identification of oligonucleotides that were able to form triple helices within the antiparallel motif. Inspection of the selected sequences revealed that, contrary to GC base pair which were always recognized by guanines, recognition of AT base pair could be achieved by either adenine or thymine, depending on the sequence context. While thymines are strongly preferred for several positions, some others can accommodate the presence of adenines. These results contribute to set the rules for designing oligonucleotides that form stable triple helices in the presence of triplex-stabilizing agents at physiological pH. They set the basis for further experiments regarding extension of potential target sequences for triple-helix formation or recognition of ligand–DNA complexes.  相似文献   
14.
Biofilms are microbial communities that adhere to biotic or abiotic surfaces and are enclosed in a protective matrix of extracellular compounds. An important advantage of the biofilm lifestyle for soil bacteria (rhizobacteria) is protection against water deprivation (desiccation or osmotic effect). The rhizosphere is a crucial microhabitat for ecological, interactive, and agricultural production processes. The composition and functions of bacterial biofilms in soil microniches are poorly understood. We studied multibacterial communities established as biofilm-like structures in the rhizosphere of Medicago sativa (alfalfa) exposed to 3 experimental conditions of water limitation. The whole biofilm-forming ability (WBFA) for rhizospheric communities exposed to desiccation was higher than that of communities exposed to saline or nonstressful conditions. A culture-dependent ribotyping analysis indicated that communities exposed to desiccation or saline conditions were more diverse than those under the nonstressful condition. 16S rRNA gene sequencing of selected strains showed that the rhizospheric communities consisted primarily of members of the Actinobacteria and α- and γ-Proteobacteria, regardless of the water-limiting condition. Our findings contribute to improved understanding of the effects of environmental stress factors on plant-bacteria interaction processes and have potential application to agricultural management practices.  相似文献   
15.
Many proteins are modified after their synthesis, by the addition of a lipid molecule to one or more cysteine residues, through a thioester bond. This modification is called S-acylation, and more commonly palmitoylation. This reaction is carried out by a family of enzymes, called palmitoyltransferases (PATs), characterized by the presence of a conserved 50- aminoacids domain called "Asp-His-His-Cys- Cysteine Rich Domain" (DHHC-CRD). There are 7 members of this family in the yeast Saccharomyces cerevisiae, and each of these proteins is thought to be responsible for the palmitoylation of a subset of substrates. Substrate specificity of PATs, however, is not yet fully understood. Several yeast PATs seem to have overlapping specificity, and it has been proposed that the machinery responsible for palmitoylating peripheral membrane proteins in mammalian cells, lacks specificity altogether.Here we investigate the specificity of transmembrane protein palmitoylation in S. cerevisiae, which is carried out predominantly by two PATs, Swf1 and Pfa4. We show that palmitoylation of transmembrane substrates requires dedicated PATs, since other yeast PATs are mostly unable to perform Swf1 or Pfa4 functions, even when overexpressed. Furthermore, we find that Swf1 is highly specific for its substrates, as it is unable to substitute for other PATs. To identify where Swf1 specificity lies, we carried out a bioinformatics survey to identify amino acids responsible for the determination of specificity or Specificity Determination Positions (SDPs) and showed experimentally, that mutation of the two best SDP candidates, A145 and K148, results in complete and partial loss of function, respectively. These residues are located within the conserved catalytic DHHC domain suggesting that it could also be involved in the determination of specificity. Finally, we show that modifying the position of the cysteines in Tlg1, a Swf1 substrate, results in lack of palmitoylation, as expected for a highly specific enzymatic reaction.  相似文献   
16.
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. It produces severe economic losses in the livestock industry. Currently available vaccines are based on inactivated FMD virus (FMDV). The use of empty capsids as a subunit vaccine has been reported to be a promising candidate because it avoids the use of virus in the vaccine production and conserves the conformational epitopes of the virus. In this report, we explored transient gene expression (TGE) in serum-free suspension-growing mammalian cells for the production of FMDV recombinant empty capsids as a subunit vaccine. The recombinant proteins produced, assembled into empty capsids and induced protective immune response against viral challenge in mice. Furthermore, they were recognized by anti-FMDV bovine sera. By using this technology, we were able to achieve expression levels that are compatible with the development of a vaccine. Thus, TGE of mammalian cells is an easy to perform, scalable and cost-effective technology for the production of a recombinant subunit vaccine against FMDV.  相似文献   
17.
In ovarian granulosa cells, follicle-stimulating hormone (FSH) regulates the proliferation and differentiation events required for follicular growth and oocyte maturation. FSH actions are mediated exclusively through the FSH receptor (FSHR). In cattle, the FSHR gene expression pattern during folliculogenesis and the implications of this receptor in reproductive disorders have been extensively studied. However, the limited availability of specific antibodies against bovine FSHR has restricted FSHR protein analysis. In the present study, we developed an anti-FSHR polyclonal serum by using a 14-kDa peptide conjugated to maltose binding protein. The antiserum obtained was characterized by western blot of protein extracts from bovine follicles, BGC-1 cells and primary cultures of granulosa cells stimulated with testosterone. Also, the blocking effect of serum on estradiol secretion and cell viability after gonadotropin stimulus was characterized in a functional in vitro assay. A 76-kDa protein, consistent with the predicted molecular size of full-length FSHR, was detected in ovarian tissue. Besides, two immunoreactive bands of 60-kDa and 30-kDa (only in cultured cells) were detected. These bands would be related to some of the isoforms of the receptor. Therefore, immunohistochemical assays allowed detecting FSHR in the cytoplasm of granulosa cells and an increase in its expression as follicles progressed from primordial to large preantral follicles. These results suggest that the anti-FSHR serum here developed has good reactivity and specificity against the native FSHR. Therefore, this antiserum may serve as a valuable tool for future studies of the biological function of FSHR in physiological conditions as well as of the molecular mechanism and functional involvement of FSHR in reproductive disorders.  相似文献   
18.
Arenavirus morphogenesis and budding occurs at cellular plasma membrane; however, the nature of membrane assembly sites remains poorly understood. In this study we examined the effect of different cholesterol-lowering agents on Junín virus (JUNV) multiplication. We found that cholesterol cell depletion reduced JUNV glycoproteins (GPs) membrane expression and virus budding. Analysis of membrane protein insolubility in Triton X-100 suggested that JUNV GPs associate with cholesterol enriched membranes. Rafts dissociation conditions as warm detergent extraction and cholesterol removal by methyl-β-cyclodextrin compound showed to impair GPs cholesterol enriched membrane association. Analysis of GPs transfected cells showed similar results suggesting that membrane raft association is independent of other viral proteins.  相似文献   
19.
Protein S-acyltransferases, also known as palmitoyltransferases (PATs), are characterized by the presence of a 50-amino acid domain called the DHHC domain. Within this domain, these four amino acids constitute a highly conserved motif. It has been proposed that the palmitoylation reaction occurs through a palmitoyl-PAT covalent intermediate that involves the conserved cysteine in the DHHC motif. Mutation of this cysteine results in lack of function for several PATs, and DHHA or DHHS mutants are used regularly as catalytically inactive controls. In a genetic screen to isolate loss-of-function mutations in the yeast PAT Swf1, we isolated an allele encoding a Swf1 DHHR mutant. Overexpression of this mutant is able to partially complement a swf1Δ strain and to acylate the Swf1 substrates Tlg1, Syn8, and Snc1. Overexpression of the palmitoyltransferase Pfa4 DHHA or DHHR mutants also results in palmitoylation of its substrate Chs3. We also investigated the role of the first histidine of the DHHC motif. A Swf1 DQHC mutant is also partially active but a DQHR is not. Finally, we show that Swf1 substrates are differentially modified by both DHHR and DQHC Swf1 mutants. We propose that, in the absence of the canonical mechanism, alternative suboptimal mechanisms take place that are more dependent on the reactivity of the acceptor protein. These results also imply that caution must be exercised when proposing non-canonical roles for PATs on the basis of considering DHHC mutants as catalytically inactive and, more generally, contribute to an understanding of the mechanism of protein palmitoylation  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号