首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   12篇
  国内免费   1篇
  2023年   3篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   5篇
  2018年   4篇
  2016年   8篇
  2015年   6篇
  2014年   5篇
  2013年   15篇
  2012年   17篇
  2011年   8篇
  2010年   7篇
  2009年   6篇
  2008年   9篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   5篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1987年   1篇
  1986年   1篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有140条查询结果,搜索用时 62 毫秒
111.
We investigated the production of hyaluronan (HA) and its effect on cell motility in cells expressing the v-src mutants. Transformation of 3Y1 by v-src virtually activated HA secretion, whereas G2A v-src, a nonmyristoylated form of v-src defective in cell transformation, had no effect. In cells expressing the temperature-sensitive mutant of v-Src, HA secretion was temperature dependent. In addition, HA as small as 1 nM, on the other side, activated cell motility in a tumor-specific manner. HA treatment strongly activated the motility of v-Src-transformed 3Y1, whereas it showed no effect on 3Y1- and 3Y1-expressing G2A v-src. HA-dependent cell locomotion was strongly blocked by either expression of dominant-negative Ras or treatment with a Ras farnesyltransferase inhibitor. Similarly, both the MEK1 inhibitor and the kinase inhibitor clearly inhibited HA-dependent cell locomotion. In contrast, cells transformed with an active MEK1 did not respond to the HA. Finally, an anti-CD44-neutralizing antibody could block the activation of cell motility by HA as well as the HA-dependent phosphorylation of mitogen-activated protein kinase and Akt. Taken together, these results suggest that simultaneous activation of the Ras-mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase pathway by the HA-CD44 interaction is required for the activation of HA-dependent cell locomotion in v-Src-transformed cells.  相似文献   
112.
Purpose: To observe if any biochemical abnormalities exist between the eye of megalophthalmic and non-megalophthalmic goldfish by high-performance liquid chromatography (HPLC). Method: Aqueous humour and sera from megalophthalmic and non-megalophthalmic goldfish were subjected to HPLC and monitored by photodiode array detection (Waters, MA, USA). Results: An unusual accumulation of a compound with a UV absorption maximum at 290 nm was observed in the aqueous humour of megalophthalmic eye. This compound was also present in the sera of both normal goldfish and one of its megalophthalmic mutant. However, it was significantly elevated in the aqueous humour of the megalophthalmic eye only. This compound concentration was very high in the eye of small fish and its concentration increased only slightly with the expansion of the eye in larger fish. Conclusions: The presence of this compound in the serum and aqueous humour indicates a specific systemic metabolic variation in Black Moor goldfish not seen other animal species we had studied (humans, bovine, chick, rabbits and rats). The marked elevation of this compound in the megalophthalmic eye indicates a possible association of this compound with the metabolic variation accounting for the expansion of the eye in megalophthalmic goldfish.  相似文献   
113.
Although verotoxin-1 (VT1) and verotoxin-2 (VT2) share a common receptor, globotriaosyl ceramide (Gb(3)), VT2 induces distinct animal pathology and is preferentially associated with human disease. Moreover VT2 cytotoxicity in vitro is less than VT1. We therefore investigated whether these toxins similarly traffic within cells via similar Gb(3) assemblies. At 4 degrees C, fluorescent-VT1 and VT2 bound both coincident and distinct punctate surface Gb(3) microdomains. After 10 min at 37 degrees C, similar distinct/coincident micropunctate intracellular localization was observed. Most internalized VT2, but not VT1, colocalized with transferrin. After 1 h, VT1 and VT2 coalesced during retrograde transport to the Golgi. During prolonged incubation (3-6 h), VT1, and VT2 (more slowly), exited the Golgi to reach the ER/nuclear envelope. At this time, VT2 induced a previously unreported, retrograde transport-dependent vacuolation. Cell surface and intracellular VT1 showed greater detergent resistance than VT2, suggesting differential 'raft' association. >90% (125)I-VT1 cell surface bound, or added to detergent-resistant cell membrane extracts (DRM), was in the Gb(3)-containing sucrose gradient 'insoluble' fraction, whereas only 30% (125)I-VT2 was similarly DRM-associated. VT1 bound more efficiently to Gb(3)/cholesterol DRMs generated in vitro. Only VT1 binding was inhibited by high cholesterol/Gb(3) ratios. VT2 competed less effectively for (125)I-VT1/Gb(3) DRM-binding but only VT2-Gb(3)/cholesterol DRM-binding was augmented by sphingomyelin. Differential VT1/VT2 Gb(3) raft-binding may mediate differential cell binding/intracellular trafficking and cytopathology.  相似文献   
114.
Markers of β-cell maturity would be useful in staging the differentiation of stem/progenitor cells to β-cells whether in vivo or in vitro. We previously identified markers for newly formed β-cells in regenerating rat pancreases after 90% partial pancreatectomy. To test the generality of these markers of newly formed β-cells, we examined their expression during the perinatal period, a time of recognized β-cell immaturity. We show by semiquantitative RT-PCR and immunostaining over the time course from embryonic day 18/20 to birth, 1 day, 2 days, 3 days, 7 days, and adult that MMP-2, CK-19, and SPD are truly markers of new and immature β-cells and that their expression transiently peaks in the perinatal period and is not entirely synchronous. The shared expression of these markers among fetal, newborn, and newly regenerated β-cells, but not adult, strongly supports their use as potential markers for new β-cells in the assessment of both the maturity of stem cell–derived insulin-producing cells and the presence of newly formed islets (neogenesis) in the adult pancreas. (J Histochem Cytochem 58:369–376, 2010)  相似文献   
115.
Stable isotope labeling is at present one of the most powerful methods in quantitative proteomics. Stable isotope labeling has been performed at both the protein as well as the peptide level using either metabolic or chemical labeling. Here, we present a straightforward and cost-effective triplex quantification method that is based on stable isotope dimethyl labeling at the peptide level. Herein, all proteolytic peptides are chemically labeled at their alpha- and epsilon-amino groups. We use three different isotopomers of formaldehyde to enable the parallel analysis of three different samples. These labels provide a minimum of 4 Da mass difference between peaks in the generated peptide triplets. The method was evaluated based on the quantitative analysis of a cell lysate, using a typical "shotgun" proteomics experiment. While peptide complexity was increased by introducing three labels, still more than 1300 proteins could be identified using 60 microg of starting material, whereby more than 600 proteins could be quantified using at least four peptides per protein. The triplex labeling was further utilized to distinguish specific from aspecific cAMP binding proteins in a chemical proteomics experiment using immobilized cAMP. Thereby, differences in abundance ratio of more than two orders of magnitude could be quantified.  相似文献   
116.
Although there are several reports on rotavirus inoculation of nonhuman primates, no reliable model exists. Therefore, this study was designed to develop a rhesus macaque model for rotavirus studies. The goals were to obtain a wild-type macaque rotavirus and evaluate it as a challenge virus for model studies. Once rotavirus was shown to be endemic within the macaque colony at the Tulane National Primate Research Center, stool specimens were collected from juvenile animals (2.6 to 5.9 months of age) without evidence of previous rotavirus infection and examined for rotavirus antigen. Six of 10 animals shed rotavirus during the 10-week collection period, and the electropherotypes of all isolates were identical to each other but distinct from those of prototype simian rotaviruses. These viruses were characterized as serotype G3 and subgroup 1, properties typical of many animal rotaviruses, including simian strains. Nucleotide sequence analysis of the VP4 gene was performed with a culture-grown isolate from the stool of one animal, designated the TUCH strain. Based on both genotypic and phylogenetic comparisons between TUCH VP4 and cognate proteins of representatives of the reported 22 P genotypes, the TUCH virus belongs to a new genotype, P[23]. A pool of wild-type TUCH was prepared and intragastrically administered to eight cesarean section-derived, specific-pathogen-free macaques 14 to 42 days of age. All animals were kept in a biocontainment level 2 facility. Although no diarrhea was observed and the animals remained clinically normal, all animals shed large quantities of rotavirus antigen in their feces after inoculation, which resolved by the end of the 14-day observation period. Therefore, TUCH infection of macaques provides a useful nonhuman primate model for studies on rotavirus protection.  相似文献   
117.
Alpha-galactosidase was purified from a fresh fruiting body of Ganoderma lucidum by precipitation with ammonium sulfate and column chromatographies with DEAE-Sephadex and Con A-Sepharose. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis. Its N-terminal amino acid sequence was similar to that of Mortierella vinacea alpha-galactosidase. The molecular mass of the enzyme was about 56 kDa by SDS-polyacrylamide gel electrophoresis, and about 249 kDa by gel filtration column chromatography. The optimum pH and temperature were 6.0 and 70 degrees C, respectively. The enzyme was fully stable to heating at 70 degrees C for 30 min. It hydrolyzed p-nitrophenyl-alpha-D-galactopyranoside (Km=0.4 mM) but hydrolyzed little o-nitrophenyl-alpha-D-galactopyranoside. It also hydrolyzed melibiose, raffinose, and stachyose. The enzyme catalyzed the transgalactosylation reaction which synthesized melibiose. The product was confirmed by various analyses.  相似文献   
118.
Plasmodium falciparum histidine-rich protein II (HRP2) is one of the best documented malaria proteins. However, little is known about the development of HRP2 concentrations under the influence of anti-malarial drugs. HRP2 levels were determined in cell medium mixture, cellular compartment, and in culture supernatant using a double-site sandwich ELISA specific for HRP2. Characteristic increases in the overall HRP2 levels were found during the later ring and the trophozoite stages. Throughout the later schizont development, rupture, and reinvasion, however, the HRP2 levels remained comparatively stable. When the cultures were exposed to serial dilutions of anti-malarial drugs, a distinct inhibition of HRP2 production was seen with increasing concentrations of drugs, resulting in sigmoid dose-response curves, similar to those obtained from conventional drug sensitivity assays. HRP2 therefore allows for a very accurate estimation of parasite development and its inhibition and may therefore be ideally suited for use in drug sensitivity or bioassays.  相似文献   
119.
Rabies virus (RV) has recently been developed as a novel vaccine candidate for human immunodeficiency virus type 1 (HIV-1). The RV glycoprotein (G) can be functionally replaced by HIV-1 envelope glycoprotein (Env) if the gp160 cytoplasmic domain (CD) of HIV-1 Env is replaced by that of RV G. Here, we describe a pilot study of the in vivo replication and immunogenicity of an RV with a deletion of G (DeltaG) expressing a simian/human immunodeficiency virus SHIV(89.6P) Env ectodomain and transmembrane domain fused to the RV G CD (DeltaG-89.6P-RVG) in a rhesus macaque. An animal vaccinated with DeltaG-89.6P-RVG developed SHIV(89.6P) virus-neutralizing antibodies and SHIV(89.6P)-specific cellular immune responses after challenge with SHIV(89.6P). There was no evidence of CD4(+) T-cell loss, and plasma viremia was controlled to undetectable levels by 6 weeks postchallenge and has remained suppressed out to 22 weeks postchallenge.  相似文献   
120.
In verotoxin 1 (VT1)-sensitive cells, globotriaosyl ceramide (Gb3) bound VT1 is endocytosed and transported retrogradely to the Golgi/endoplasmic reticulum (ER). The importance of the Golgi-dependent retrograde transport of VT1 is now shown to vary as a function of both VT1 exposure time and concentration. Following 3 h exposure to < 50 ng/ml VT1, Vero cell cytotoxicity and protein synthesis inhibition is absolutely dependent on intact Golgi structure. However, after 24 h incubation with concentrations of VT1 above 50 ng/ml, a filipin-sensitive (caveolae-dependent) route for cytotoxicity becomes significant. Brefeldin A (BFA), which prevents Golgi-dependent retrograde traffic, protects cells from low VT1 concentrations but not following prolonged toxin exposure at higher VT1 concentrations. Under these conditions, only a combination of BFA and filipin is sufficient to fully protect cells. Intracellular VT1 trafficking monitored using the nontoxic B subunit showed accumulation within BFA-collapsed TGN/endosomes. Considerable VT1 B was retained at the surface of filipin-treated cells, but Golgi targeting was still apparent. Filipin-sensitive VT1 cytotoxicity does not require Golgi access and may involve direct transmembrane signaling. Although cell surface VT1 does not colocalize with caveolin 1, a small fraction of endocytosed VT1 is found within caveolin 1-containing vesicles. These studies indicate both a caveolae-dependent and independent pathway for VT1 access to the TGN/Golgi from the cell surface and two noninterconverting pools of membrane Gb3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号