首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2006年   5篇
  2005年   1篇
  2003年   1篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1983年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
31.
Summary Sodium alginate, which gels in the presence of calcium ions, is commonly used for culture of anchorage-independent cells, such as chondrocytes. Normally, the gel appears microscopically homogeneous but, depending on the conditions of gelation, it may contain a varying number of small channels that extend inward from the surface. We have examined the influence of these channels on the morphology of cultured chondrocytes entrapped in alginate beads. Growth-plate or articular chondrocytes cultured in alginate normally proliferate and form rounded cell clusters but, in alginate beads containing numerous channels, many chondrocytes become aligned and form columns similar to those in the growth plate in vivo. As the pattern of cellular growth and morphology in alginate is profoundly influenced by the presence of channels in the gel, further studies were conducted to determine what specific conditions of gelation affect their formation. The channels are especially numerous when both the alginate and the gelling solutions lack sodium ions or other monovalent cations. The channels are cavities in the gel formed by particulate blocking of the rapid diffusion of calcium ions from the gelling solution into the boundary of the calcium alginate solution, and hence they extend inward from cells at the surface of the alginate gel. An understanding of the conditions under which these channels develop makes it possible either to avoid their formation or, alternatively, to enhance the number of channels in order to encourage proliferating cells to grow in radial columns, rather than in a less organized pattern characteristic of most culture systems.  相似文献   
32.
Mitochondrial gene divergence of Colombian Drosophila pseudoobscura   总被引:1,自引:0,他引:1  
Isolated populations of drosophila pseudoobscura, separated from North American populations by about 2,400 km, were found in Colombia in 1960. We compared for sequences of the small ribosomal RNA (srRNA) gene on the mitochondria between North American and Colombian D. pseudoobscura in order to clarify the age of the Colombian isolates. The North American populations were not genetically different from each other but were genetically different from the Colombian populations. The Mexican strains represent the area from which the Colombian founders might have come. The estimated net nucleotide divergence between Mexican and Colombian D. pseudoobscura indicates that the Colombian population is not an ancient lineage. Phylogenies using both distance and parsimony methodologies reinforced this conclusion. The Colombian samples group together with both methods but, according to the bootstrap analysis, not significantly. It appears that the populations have not been separated long enough for their DNA sequences to show much divergence.   相似文献   
33.
34.
INTRODUCTIONAsearlyasin1948wehavefr8CtionatedisolatednucleifromnormalandtumorcellsbyextractionwithiMNaCIanddilutealkali[1].Thenuclearresiduewasthenstudiedmorethoroughly[2,3].Lateron,sillillarproteinousnuclearresidueswereisolatedbyotherworkers[46]andasstud…  相似文献   
35.
36.

Background

Microsatellites are nucleotide sequences of tandem repeats occurring throughout the genome, which have been widely used in genetic linkage analysis, studies of loss of heterozygosity, determination of lineage and clonality, and the measurement of genome instability or the emergence of drug resistance reflective of mismatch repair deficiency. Such analyses may involve the parallel evaluation of many microsatellite loci, which are often limited by sample DNA, are labor intensive, and require large data processing.

Results

To overcome these challenges, we developed a cost-effective high-throughput approach of microsatellite analysis, in which the amplifications of microsatellites are performed in miniaturized, multiplexed polymerase chain reaction (PCR) adaptable to 96 or 384 well plates, and accurate automated allele identification has been optimized with a collective reference dataset of 5,508 alleles using the GeneMapper software.

Conclusions

In this investigation, we have documented our experience with the optimization of multiplex PCR conditions and automated allele identification, and have generated a unique body of data that provide a starting point for a cost-effective, high-throughput process of microsatellite analysis using the studied markers.
  相似文献   
37.

Background  

G protein-coupled receptors (GPCRs) represent a family of well-characterized drug targets with significant therapeutic value. Phylogenetic classifications may help to understand the characteristics of individual GPCRs and their subtypes. Previous phylogenetic classifications were all based on the sequences of receptors, adding only minor information about the ligand binding properties of the receptors. In this work, we compare a sequence-based classification of receptors to a ligand-based classification of the same group of receptors, and evaluate the potential to use sequence relatedness as a predictor for ligand interactions thus aiding the quest for ligands of orphan receptors.  相似文献   
38.

Background  

Inteins are self-splicing protein elements. They are translated as inserts within host proteins that excise themselves and ligate the flanking portions of the host protein (exteins) with a peptide bond. They are encoded as in-frame insertions within the genes for the host proteins. Inteins are found in all three domains of life and in viruses, but have a very sporadic distribution. Only a small number of intein coding sequences have been identified in eukaryotic nuclear genes, and all of these are from ascomycete or basidiomycete fungi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号