首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   11篇
  200篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   9篇
  2016年   8篇
  2015年   14篇
  2014年   10篇
  2013年   21篇
  2012年   25篇
  2011年   14篇
  2010年   7篇
  2009年   6篇
  2008年   13篇
  2007年   9篇
  2006年   7篇
  2005年   8篇
  2004年   9篇
  2003年   12篇
  2002年   3篇
  1999年   1篇
  1998年   2篇
  1988年   1篇
  1986年   1篇
  1976年   1篇
排序方式: 共有200条查询结果,搜索用时 15 毫秒
41.
TRAPPI is a large complex that mediates the tethering of COPII vesicles to the Golgi (heterotypic tethering) in the yeast Saccharomyces cerevisiae. In mammalian cells, COPII vesicles derived from the transitional endoplasmic reticulum (tER) do not tether directly to the Golgi, instead, they appear to tether to each other (homotypic tethering) to form vesicular tubular clusters (VTCs). We show that mammalian Bet3p (mBet3p), which is the most highly conserved TRAPP subunit, resides on the tER and adjacent VTCs. The inactivation of mBet3p results in the accumulation of cargo in membranes that colocalize with the COPII coat. Furthermore, using an assay that reconstitutes VTC biogenesis in vitro, we demonstrate that mBet3p is required for the tethering and fusion of COPII vesicles to each other. Consistent with the proposal that mBet3p is required for VTC biogenesis, we find that ERGIC-53 (VTC marker) and Golgi architecture are disrupted in siRNA-treated mBet3p-depleted cells. These findings imply that the TRAPPI complex is essential for VTC biogenesis.  相似文献   
42.
One of the key challenges in lipidomics is to quantify lipidomes of interest, as it is practically impossible to collect all authentic materials covering the targeted lipidomes. For diverse ceramides (CER) in human stratum corneum (SC) that play important physicochemical roles in the skin, we developed a novel method for quantification of the overall CER species by improving our previously reported profiling technique using normal-phase liquid chromatog­raphy-electrospray ionization-mass spectrometry (NPLC-ESI-MS). The use of simultaneous selected ion monitoring measurement of as many as 182 kinds of molecular-related ions enables the highly sensitive detection of the overall CER species, as they can be analyzed in only one SC-stripped tape as small as 5 mm × 10 mm. To comprehensively quantify CERs, including those not available as authentic species, we designed a procedure to estimate their levels using relative responses of representative authentic species covering the species targeted, considering the systematic error based on intra-/inter-day analyses. The CER levels obtained by this method were comparable to those determined by conventional thin-layer chromatography (TLC), which guarantees the validity of this method. This method opens lipidomics approaches for CERs in the SC.  相似文献   
43.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)2 is a classic glycolytic enzyme that also mediates cell death by its nuclear translocation under oxidative stress. Meanwhile, we previously presented that oxidative stress induced disulfide-bonded GAPDH aggregation in vitro. Here, we propose that GAPDH aggregate formation might participate in oxidative stress-induced cell death both in vitro and in vivo. We show that human GAPDH amyloid-like aggregate formation depends on the active site cysteine-152 (Cys-152) in vitro. In SH-SY5Y neuroblastoma, treatment with dopamine decreases the cell viability concentration-dependently (IC50 = 202 μm). Low concentrations of dopamine (50–100 μm) mainly cause nuclear translocation of GAPDH, whereas the levels of GAPDH aggregates correlate with high concentrations of dopamine (200–300 μm)-induced cell death. Doxycycline-inducible overexpression of wild-type GAPDH in SH-SY5Y, but not the Cys-152-substituted mutant (C152A-GAPDH), accelerates cell death accompanying both endogenous and exogenous GAPDH aggregate formation in response to high concentrations of dopamine. Deprenyl, a blocker of GAPDH nuclear translocation, fails to inhibit the aggregation both in vitro and in cells but reduced cell death in SH-SY5Y treated with only a low concentration of dopamine (100 μm). These results suggest that GAPDH participates in oxidative stress-induced cell death via an alternative mechanism in which aggregation but not nuclear translocation of GAPDH plays a role. Moreover, we observe endogenous GAPDH aggregate formation in nigra-striatum dopaminergic neurons after methamphetamine treatment in mice. In transgenic mice overexpressing wild-type GAPDH, increased dopaminergic neuron loss and GAPDH aggregate formation are observed. These data suggest a critical role of GAPDH aggregates in oxidative stress-induced brain damage.  相似文献   
44.
IL-5 plays important roles in eosinophil differentiation, expansion, and recruitment. The regulation of IL-5 seems critical for the treatment of eosinophil-mediated allergic reactions. However, the precise mechanisms for IL-5 regulation remain unknown. In this study, we investigated how IL-5 production is regulated. The transduction of GATA-3 into a murine T cell hybridoma resulted in acquiring the ability to produce IL-5 in response to an antigenic stimulus like Th2 cells. This production was dependent on the cAMP-PKA pathway, but not on p38 activation. Transduction of NIK largely impaired IL-5 production. RelA and RelB similarly impaired IL-5 production. RelA decreased not only IL-5 protein amount but mRNA. RelA also inhibited Il5-luciferase reporter activity. The transduction of GATA-3 decreased the expression of Tbx21 and Eomes, but the additional transduction of RelA abrogated the decreased expression of GATA-3-induced Tbx21 and Eomes. Furthermore, the transduction of T-bet or Eomes into the GATA-3-transduced T cell hybridoma impaired IL-5 production. These results suggested that strong enhancement of the NFκB pathway downregulates IL-5 production and upregulates T-box protein expression to shift an immune response from Th2 to inflammatory Th1.  相似文献   
45.
Anti-mannotriose (Man3) antibodies were previously isolated from a Keio phage library displaying human single chain variable fragments (scFvs) using a neoglycolipid, Man3- dipalmitoylphosphatidylethanolamine. Of three genes constructed, the 5A3 clone was expressed in mouse myeloma NS0 cells as a conjugate with human IgG1 Fc (scFv-Fc) and characterized (Sakai, K., Shimizu, Y., Chiba, T., Matsumoto-Takasaki, A., Kusada, Y., Zhang, W., Nakata, M., Kojima, N., Toma, K., Takayanagi, A., Shimizu, N., and Fujita-Yamaguchi, Y. (2007) Biochemistry 46, 253–262; Zhang, W., Matsumoto-Takasaki, A., Kusada, Y., Sakaue, H., Sakai, K., Nakata, M., and Fujita-Yamaguchi, Y. (2007) Biochemistry 46, 263–270). Similarly, anti-Lex phages were screened from the same library with lacto-N-fucopentaose III (LNFPIII; Lex)-dipalmitoylphosphatidylethanolamine. Of five phage clones isolated, two scFv genes were constructed to express scFv-Fc proteins in NS0 cells. As was experienced with anti-Man3 scFv-Fc clones, only one anti-LNFPIII clone, 1F12, was successfully produced and purified as an scFv-Fc protein. Although anti-LNFPIII 1F12 and anti-Man3 5A3 scFv-Fc proteins were secreted into media, a decline in scFv-Fc production was observed with both stable clones during early passages. Transient expression of anti-LNFPIII and anti-Man3 scFv-Fc genes in COS-7 cells and subsequent analyses of scFv-Fc protein expression revealed accumulation of translated proteins in the endoplasmic reticulum for scFv-Fc proteins derived from clones that did not survive as stable clones. This report describes the following: (i) isolation of anti-LNFPIII scFv genes; (ii) purification of anti-LNFPIII scFv-Fc proteins from stably and transiently expressed cells; and (iii) extracellular or intracellular localization of two anti-LNFPIII and three anti-Man3 scFv-Fc proteins. The results suggest that expression of anti-Man3 and other anti-carbohydrate antibodies in mammalian cells is disadvantageous for cell growth.  相似文献   
46.
Morbidity and mortality in cystic fibrosis (CF) are due not only to abnormal epithelial cell function, but also to an abnormal immune response. We have shown previously that macrophages lacking CF transmembrane conductance regulator (CFTR), the gene mutated in CF, contribute significantly to the hyperinflammatory response observed in CF. In this study, we show that lack of functional CFTR in murine macrophages causes abnormal TLR4 subcellular localization. Upon LPS stimulation, CFTR macrophages have prolonged TLR4 retention in the early endosome and reduced translocation into the lysosomal compartment. This abnormal TLR4 trafficking leads to increased LPS-induced activation of the NF-κB, MAPK, and IFN regulatory factor-3 pathways and decreased TLR4 degradation, which affects downregulation of the proinflammatory state. In addition to primary murine cells, mononuclear cells isolated from CF patients demonstrate similar defects in response to LPS. Moreover, specific inhibition of CFTR function induces abnormal TLR4 trafficking and enhances the inflammatory response of wild-type murine cells to LPS. Thus, functional CFTR in macrophages influences TLR4 spatial and temporal localization and perturbs LPS-mediated signaling in both murine CF models and patients with CF.  相似文献   
47.
48.
Cancer stem cells (CSCs) are capable of continuous proliferation and self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. CSCs are considered derived from normal stem cells affected by the tumor microenvironment although the mechanism of development is not clear yet. In 2007, Yamanaka's group succeeded in generating Nanog mouse induced pluripotent stem (miPS) cells, in which green fluorescent protein (GFP) has been inserted into the 5'-untranslated region of the Nanog gene. Usually, iPS cells, just like embryonic stem cells, are considered to be induced into progenitor cells, which differentiate into various normal phenotypes depending on the normal niche. We hypothesized that CSCs could be derived from Nanog miPS cells in the conditioned culture medium of cancer cell lines, which is a mimic of carcinoma microenvironment. As a result, the Nanog miPS cells treated with the conditioned medium of mouse Lewis lung carcinoma acquired characteristics of CSCs, in that they formed spheroids expressing GFP in suspension culture, and had a high tumorigenicity in Balb/c nude mice exhibiting angiogenesis in vivo. In addition, these iPS-derived CSCs had a capacity of self-renewal and expressed the marker genes, Nanog, Rex1, Eras, Esg1 and Cripto, associated with stem cell properties and an undifferentiated state. Thus we concluded that a model of CSCs was originally developed from miPS cells and proposed the conditioned culture medium of cancer cell lines might perform as niche for producing CSCs. The model of CSCs and the procedure of their establishment will help study the genetic alterations and the secreted factors in the tumor microenvironment which convert miPS cells to CSCs. Furthermore, the identification of potentially bona fide markers of CSCs, which will help the development of novel anti-cancer therapies, might be possible though the CSC model.  相似文献   
49.
Liver X receptors (LXR alpha and LXR beta) are nuclear receptors, which are important regulators of cholesterol and lipid metabolism. LXRs control genes involved in cholesterol efflux in macrophages, bile acid synthesis in liver and intestinal cholesterol absorption. LXRs also regulate genes participating in lipogenesis. To determine whether the activation of LXR promotes or inhibits development of atherosclerosis, T-0901317, a synthetic LXR ligand, was administered to low density lipoprotein receptor (LDLR)(-/-) mice. T-0901317 significantly reduced the atherosclerotic lesions in LDLR(-/-) mice without affecting plasma total cholesterol levels. This anti-atherogenic effect correlated with the plasma concentration of T-0901317, but not with high density lipoprotein cholesterol, which was increased by T-0901317. In addition, we observed that T-0901317 increased expression of ATP binding cassette A1 in the lesions in LDLR(-/-) mice as well as in mouse peritoneal macrophages. T-0901317 also significantly induced cholesterol efflux activity in peritoneal macrophages. These results suggest that LXR ligands may be useful therapeutic agents for the treatment of atherosclerosis.  相似文献   
50.
Lactic acid bacteria were isolated from various food samples and evaluated for hydrogen peroxide (H2O2) production. Cells suspended in 0.5% (wt/vol) glucose plus 0.5% (wt/vol) lactate (pH 7.0) were incubated for 5 h at 37°C under aeration. Among 193 strains, 27 strains accumulated 201-300 ppm H2O2, and 4 strains accumulated more than 301 ppm H2O2 in the cell suspensions. Among the 9 high-level H2O2-producing strains, 8 strains were identified as Lactococcus lactis subsp. lactis. The cell-free filtrate from Lc. lactis subsp. lactis AI 62, which contained approximately 350 ppm H2O2, was evaluated for antimicrobial activity against Enterococcus faecalis, Ent. faecium, enterotoxigenic Escherichia coli, Listeria ivanovii, Staphylococcus aureus, Yersinia enterocolitica, and Aeromonas hydrophila. After 1 h incubation at 30°C in the cell-free filtrate, the initial viable cell counts of the target bacteria (5.53–6.00 log cfu/mL) were reduced by 0.12-5.00 log units, except in the case of enterococci. The sensitivity varied with the bacterial species and pH. The enterococci were resistant to the treatment. Our results show that H2O2 accumulated by lactic acid bacteria in a cell suspension is very effective in reducing the viable cell count of food-borne pathogens.Received: 7 October 2002 / Accepted: 4 November 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号