首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   643篇
  免费   42篇
  2022年   4篇
  2021年   9篇
  2020年   4篇
  2018年   9篇
  2017年   6篇
  2016年   15篇
  2015年   14篇
  2014年   19篇
  2013年   35篇
  2012年   34篇
  2011年   27篇
  2010年   15篇
  2009年   17篇
  2008年   25篇
  2007年   25篇
  2006年   25篇
  2005年   32篇
  2004年   26篇
  2003年   37篇
  2002年   30篇
  2001年   26篇
  2000年   29篇
  1999年   17篇
  1998年   8篇
  1997年   10篇
  1996年   4篇
  1995年   7篇
  1994年   9篇
  1993年   6篇
  1992年   17篇
  1991年   15篇
  1990年   8篇
  1989年   12篇
  1988年   11篇
  1987年   5篇
  1986年   6篇
  1985年   9篇
  1983年   9篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1975年   6篇
  1974年   3篇
  1973年   3篇
  1972年   4篇
  1971年   4篇
  1970年   3篇
  1969年   3篇
  1967年   3篇
  1965年   4篇
排序方式: 共有685条查询结果,搜索用时 31 毫秒
51.
The eyes are riched in long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid [ARA; 20:4 (n−6)] and docosahexaenoic acid [DHA; 22:6 (n−3)]. Despite their abundance in the eyes, ARA and DHA cannot be sufficiently synthesized de novo in mammals. During gestation, eye development is exceptionally rapid, and substantial amounts of LC-PUFAs are needed to ensure proper eye development. Here, we studied the influences of dietary LC-PUFAs in dams (C57BL/6 and C3H/He) on the eye morphogenesis and organogenesis of their pups. Intriguingly, fetuses and newborn mice from C57BL/6 dams fed an LC-PUFA (particularly ARA)-enriched diet displayed a much higher incidence of eye abnormalities such as microphthalmia (small eye) and corneal opacity than those from dams fed an LC-PUFA-poor diet. The effects of LC-PUFAs on eye anomalies were evident only in the female pups of C57BL/6 inbred mice, not in those of C3H/He mice or male C57BL/6 mice. These results demonstrate a gene-by-environment (GxE) interaction in eye development in mice. Furthermore, our molecular analysis suggested the potential roles of Pitx3 and Pax6 in the above interaction involving ARA.  相似文献   
52.
53.
54.
Arginine rich, mutated in early stage of tumors (ARMET) was first identified as a human gene highly mutated in a variety of cancers. However, little is known about the characteristics of the ARMET protein and its expression. We identified ARMET as a gene upregulated by endoplasmic reticulum (ER) stress. Here, we show that the mouse homologue of ARMET is an 18-kDa soluble ER protein that is mature after cleavage of a signal sequence and has four intramolecular disulfide bonds, including two in CXXC sequences. ER stress stimulated ARMET expression, and the expression patterns of ARMET mRNA and protein in mouse tissues were similar to those of Grp78, an Hsp70-family protein required for quality control of proteins in the ER. A reporter gene assay using a mouse ARMET promoter revealed that the unfolded protein response of the ARMET gene is regulated by an ERSE-II element whose sequence is identical to that of the HERP gene. ARMET is the second fully characterized ERSE-II-dependent gene and likely contributes to quality control of proteins in the ER.  相似文献   
55.
56.
Many parasitic diseases have been eradicated in industrialized countries and well-proven tools and techniques exist to control them. However, the same diseases still cause incalculable ill health and suffering in the developing world. The difficulty remains how best to apply existing solutions where they are most needed. Within a period of 25 years following World War II, Japan eliminated many parasitic diseases and raised national health and living standards to world-leading levels. Gradually, the predominantly community-driven and intersectoral collaborative partnership systems (i.e. private sector, public sector, general public, etc.) and practices that worked in Japan are being extended to Asia and now Africa. These are backed by the provision of substantial human and financial resources from a nation whose population retains the reputation as being the healthiest and longest living in the world.  相似文献   
57.
The reactivity of flow-injection (FI)-horseradish peroxidase (HRP)-catalysed imidazole chemiluminescence (CL) was studied for continuous determination of hydrogen peroxide (H(2)O(2)) and serum glucose with immobilized glucose oxidase. Light emission by the HRP-catalysed imidazole CL was obtained when immobilized HRP, alkaline imidazole (in Tricine solution, pH 9.3) and H(2)O(2) were reacted at room temperature. The optimal pH for the CL reaction was 9.3 and the optimal concentration of imidazole was 100 micromol/L. When no imidazole was added, the light intensity of the same H(2)O(2) specimen decreased to a level that could not be quantitatively determined. The spectrum of the light emitted by imidazole CL was in the range 400-600 nm with a peak at 500 nm. The calibration equation for determination of H(2)O(2) was y = 9860x(2) + 3830x + 11,700, where y = light intensity (RLU) and x = concentration of H(2)O(2) (micromol/L). The detection limit of H(2)O(2) was 5 pmol, and the reproducibility of the H(2)O(2) assay was 2.3% of the coefficient of variation (H(2)O(2) 48 micromol/L, n = 13). The CL method was successfully applied to assay glucose after on-line generation of H(2)O(2) with the immobilized glucose oxidase column, resulting in good reproducibility (CV = 3.3% and 1.0% for the standard glucose and the control serum, respectively).  相似文献   
58.
Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply.  相似文献   
59.
The efficient synthesis of 3-O-thia-cPAs (4a-d), sulfur analogues of cyclic phosphatidic acid (cPA), has been achieved. The key step of the synthesis is an intramolecular Arbuzov reaction to construct the cyclic thiophosphate moiety. The present synthetic route enables the synthesis of 4a-d in only four steps from the commercially available glycidol. Preliminary biological experiments showed that 4a-d exhibited a similar inhibitory effect on autotaxin (ATX) as original cPA.  相似文献   
60.
The ability to synthesize cellulose by Asaia bogorensis, a member of the acetic acid bacteria, was studied in two substrains, AJ and JCM. Although both strains have identical 16S rDNA sequence, only the AJ strain formed a solid pellicle at the air-liquid interface in static culture medium, and we analyzed this pellicle using a variety of techniques. In the presence of cellulase, glucose and cellobiose were released from the pellicle suggesting that it is made of cellulose. Field emission electron microscopy allowed the visualization of a 3D knitted structure with ultrafine microfibrils (approximately 5-20 nm in width) in cellulose from A. bogorensis compared with the 40-100 nm wide microfibrils observed in cellulose isolated from Gluconacetobacter xylinus, suggesting differences in the mechanism of cellulose biosynthesis or organization of cellulose synthesizing sites in these two related bacterial species. Identifying these differences will lead to a better understanding of cellulose biosynthesis in bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号