首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   643篇
  免费   42篇
  2022年   4篇
  2021年   9篇
  2020年   4篇
  2018年   9篇
  2017年   6篇
  2016年   15篇
  2015年   14篇
  2014年   19篇
  2013年   35篇
  2012年   34篇
  2011年   27篇
  2010年   15篇
  2009年   17篇
  2008年   25篇
  2007年   25篇
  2006年   25篇
  2005年   32篇
  2004年   26篇
  2003年   37篇
  2002年   30篇
  2001年   26篇
  2000年   29篇
  1999年   17篇
  1998年   8篇
  1997年   10篇
  1996年   4篇
  1995年   7篇
  1994年   9篇
  1993年   6篇
  1992年   17篇
  1991年   15篇
  1990年   8篇
  1989年   12篇
  1988年   11篇
  1987年   5篇
  1986年   6篇
  1985年   9篇
  1983年   9篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1975年   6篇
  1974年   3篇
  1973年   3篇
  1972年   4篇
  1971年   4篇
  1970年   3篇
  1969年   3篇
  1967年   3篇
  1965年   4篇
排序方式: 共有685条查询结果,搜索用时 15 毫秒
101.
The semi-pilot scale of continuous flow type hydrothermal reactor has been investigated to separate hemicellulose fraction from corncob. We obtained the effective recovery of hemicellulose using tubular type reactor at 200 °C for 10 min. From constituent sugar analysis of corncob, 82.2% of xylan fraction was recovered as mixture of xylose, xylooligosaccharides and higher-xylooligosaccharide which has more than DP 10. During purification of solubilized fraction by hydrothermal reaction such as ultrafiltration and ion exchange resin, higher-xylooligosaccharide was recovered as the precipitate. This precipitate was identified as non-blanched xylan fraction which has from DP 11 to DP 21 mainly. In this system, only a small amount of furfural has been generated. This tubular reactor has a characteristic controllability of thermal history, and seems to be effective for sugar recovery from soft biomass like corncob.  相似文献   
102.
Gonium pectorale O. F. Müll. (Volvocales, Chlorophyta), a colonial 8‐ or 16‐cellular alga, is phylogenetically important as an intermediate form between isogametic unicellular Chlamydomonas and oogamous Volvox. We identified the mating‐type specific gene GpMTD1, from G. pectorale, the first homologue of Chlamydomonas reinhardtii MTD1 (CrMTD1). The GpMTD1 gene was found to be present only in the minus mating‐type locus and was expressed specifically in the gametic phase as is the case for CrMTD1, suggested to participate in development of the minus gametes. This gene is useful as a probe in analyzing the bacterial artificial chromosome (BAC) library for resolving genomic structures of the mating‐type loci in isogamous and oogamous colonial volvocaleans.  相似文献   
103.
To understand the characteristics of the ecosystem in Japanese lowland marsh, we investigated chlorophyll-a (Chl. a), photosynthesis and respiration of a phytoplankton community in a brownish-colored pond in Naka-ikemi marsh, Tsuruga, Fukui Prefecture. Chl. a concentrations and volumetric gross primary production rates ranged between 1.3–57.0 μg Chl. a l−1 and 148–1619 μg C l−1 day−1 during the study period. Higher values of Chl. a and primary production rates were clearly observed from June to September, when the dominant algae were the phytoflagellates, Peridinium (Dinophyceae) and Cryptomonas (Cryptophyceae), with swimming ability. The trophic status of the pond water of Naka-ikemi marsh was defined as being in eutrophic condition based on the biomass and productivity of phytoplankton. However, depths of Z 1% showing the productive layer in this study site were relatively narrower than those observed in the hyper-eutrophic Lake Suwa with frequent cyanobacterial water bloom. Factor-attenuating underwater light intensity in Naka-ikemi marsh was presumed to be colored dissolved organic matter. Thus, not only phytoplankton primary production, but also allochthonous organic matter supplied from the catchment area seems to be the dominant factor in the whole energy budget of the pond. In conclusion, we regarded the pond ecosystem in Naka-ikemi marsh to be in a eutrophic–dystrophic condition.  相似文献   
104.
A strain of Chloromonas pseudoplatyrhyncha (Pascher) P. C. Silva, which has not been studied previously using cultured material, was established from a soil sample collected in Japan and examined by light microscopy, transmission electron microscopy, and molecular phylogenetic analyses. The chloroplasts of this species showed no pyrenoids under light microscopy. However, transmission electron microscopy and the staining methods with carmine after fixation in an acidified hypochlorite solution revealed that Chloromonas pseudoplatyrhyncha actually had multiple, atypical pyrenoids (pyrenoid matrices without associated starch grains) that were angular in shape and distributed in the interior regions of the lobes of the chloroplasts. Although some other species of Chloromonas have atypical pyrenoids in the chloroplast, such angular pyrenoids have not previously been reported within the Volvocales. The present molecular phylogenetic analysis, based on 18S ribosomal RNA, adenosine triphosphate synthase β‐subunit, and P700 chlorophyll a‐apoprotein A2 gene sequences, demonstrated that Chloromonas pseudoplatyrhyncha belonged to the Chloromonas lineage or Chloromonadinia, in which it occupied a basal position outside a robust, large monophyletic group consisting of 13 species of Chloromonas and Gloeomonas.  相似文献   
105.
Two new types of caged gene-inducers, caged 17beta-estradiol and caged dexamethazone, were synthesized. Caged gene-inducers were applied to transgenic Arabidopsis plants carrying a steroid hormone-inducible transactivation system. Light uncaged caged gene-inducers and controlled spatial and temporal expression of transgene in the transgenic plant. Furthermore, caged gene-inducers enabled the control of root development by light.  相似文献   
106.
Somatic cellular differentiation plays a critical role in the transition from unicellular to multicellular life, but the evolution of its genetic basis remains poorly understood. By definition, somatic cells do not reproduce to pass on genes and so constitute an extreme form of altruistic behaviour. The volvocine green algae provide an excellent model system to study the evolution of multicellularity and somatic differentiation. In Volvox carteri, somatic cell differentiation is controlled by the regA gene, which is part of a tandem duplication of genes known as the reg cluster. Although previous work found the reg cluster in divergent Volvox species, its origin and distribution in the broader group of volvocine algae has not been known. Here, we show that the reg cluster is present in many species without somatic cells and determine that the genetic basis for soma arose before the phenotype at the origin of the family Volvocaceae approximately 200 million years ago. We hypothesize that the ancestral function was involved in regulating reproduction in response to stress and that this function was later co‐opted to produce soma. Determining that the reg cluster was co‐opted to control somatic cell development provides insight into how cellular differentiation, and with it greater levels of complexity and individuality, evolves.  相似文献   
107.
108.
Many of the genes that control photosynthesis are carried in the chloroplast. These genes differ among species. However, evidence has yet to be reported revealing the involvement of organelle genes in the initial stages of plant speciation. To elucidate the molecular basis of aquatic plant speciation, we focused on the unique plant species Chara braunii C. C. Gmel. that inhabits both shallow and deep freshwater habitats and exhibits habitat‐based dimorphism of chloroplast DNA (cpDNA). Here, we examined the “shallow” and “deep” subpopulations of C. braunii using two nuclear DNA (nDNA) markers and cpDNA. Genetic differentiation between the two subpopulations was measured in both nDNA and cpDNA regions, although phylogenetic analyses suggested nuclear gene flow between subpopulations. Neutrality tests based on Tajima’s D demonstrated diversifying selection acting on organelle DNA regions. Furthermore, both “shallow” and “deep” haplotypes of cpDNA detected in cultures originating from bottom soils of three deep environments suggested that migration of oospores (dormant zygotes) between the two habitats occurs irrespective of the complete habitat‐based dimorphism of cpDNA from field‐collected vegetative thalli. Therefore, the two subpopulations are highly selected by their different aquatic habitats and show prezygotic isolation, which represents an initial process of speciation affected by ecologically based divergent selection of organelle genes.  相似文献   
109.
Polar auxin movement is a primary regulator of programmed and plastic plant development. Auxin transport is highly regulated at the cellular level and is mediated by coordinated transport activity of plasma membrane-localized PIN, ABCB, and AUX1/LAX transporters. The activity of these transporters has been extensively analyzed using a combination of pharmacological inhibitors, synthetic auxins, and knock-out mutants in Arabidopsis. However, efforts to analyze auxin-dependent growth in other species that are less tractable to genetic manipulation require more selective inhibitors than are currently available. In this report, we characterize the inhibitory activity of 5-alkoxy derivatives of indole 3-acetic acid and 7-alkoxy derivatives of naphthalene 1-acetic acid, finding that the hexyloxy and benzyloxy derivatives act as potent inhibitors of auxin action in plants. These alkoxy-auxin analogs inhibit polar auxin transport and tropic responses associated with asymmetric auxin distribution in Arabidopsis and maize. The alkoxy-auxin analogs inhibit auxin transport mediated by AUX1, PIN, and ABCB proteins expressed in yeast. However, these analogs did not inhibit or activate SCF(TIR1) auxin signaling and had no effect on the subcellular trafficking of PIN proteins. Together these results indicate that alkoxy-auxins are inactive auxin analogs for auxin signaling, but are recognized by PIN, ABCB, and AUX1 auxin transport proteins. Alkoxy-auxins are powerful new tools for analyses of auxin-dependent development.  相似文献   
110.
Giardia lamblia is a unicellular, early branching eukaryote causing giardiasis, one of the most common human enteric diseases. Giardia, a microaerophilic protozoan parasite has to build up mechanisms to protect themselves against oxidative stress within the human gut (oxygen concentration 60 μM) to establish its pathogenesis. G. lamblia is devoid of the conventional mechanisms of the oxidative stress management system, including superoxide dismutase, catalase, peroxidase, and glutathione cycling, which are present in most eukaryotes. NADH oxidase is a major component of the electron transport chain of G. lamblia, which in concurrence with disulfide reductase, protects oxygen-labile proteins such as pyruvate: ferredoxin oxidoreductase against oxidative stress by sustaining a reduced intracellular environment. It also contains the arginine dihydrolase pathway, which occurs in a number of anaerobic prokaryotes, includes substrate level phosphorylation and adequately active to make a major contribution to ATP production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号