全文获取类型
收费全文 | 1221篇 |
免费 | 82篇 |
专业分类
1303篇 |
出版年
2022年 | 19篇 |
2021年 | 17篇 |
2020年 | 8篇 |
2019年 | 15篇 |
2018年 | 20篇 |
2017年 | 30篇 |
2016年 | 36篇 |
2015年 | 42篇 |
2014年 | 60篇 |
2013年 | 76篇 |
2012年 | 105篇 |
2011年 | 104篇 |
2010年 | 54篇 |
2009年 | 62篇 |
2008年 | 82篇 |
2007年 | 97篇 |
2006年 | 88篇 |
2005年 | 81篇 |
2004年 | 64篇 |
2003年 | 69篇 |
2002年 | 53篇 |
2001年 | 4篇 |
2000年 | 8篇 |
1999年 | 8篇 |
1998年 | 16篇 |
1997年 | 21篇 |
1996年 | 9篇 |
1995年 | 14篇 |
1994年 | 11篇 |
1993年 | 1篇 |
1992年 | 4篇 |
1991年 | 4篇 |
1990年 | 1篇 |
1987年 | 1篇 |
1986年 | 3篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1978年 | 3篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1975年 | 1篇 |
1970年 | 1篇 |
排序方式: 共有1303条查询结果,搜索用时 15 毫秒
31.
Mutans streptococci are considered the predominant pathogens in dental caries. Three methods, i.e. dot blot hybridization analysis, PCR analysis and SDS-blue dextran-PAGE, were examined for identifying mutans streptococcal species. In dot blot hybridization, DNA probe derived from the dextranase gene (dexA) of Streptococcus mutans hybridized with different intensities under the condition of low stringency against each species of mutans streptococci although the dexA probe was specific for S. mutans under the condition of high stringency. Oligonucleotide primers for polymerase chain reaction (PCR) were designed on the basis of the dexA DNA sequence. The primers amplified species-specific PCR products in the reference species (15 strains of 5 species) of mutans streptococci. An electrophoretic profile of dextranases from the mutans streptococci on SDS-blue dextran-PAGE also showed species-specific behavior. These results suggest that the three identification methods examined here are useful for distinguishing the species of mutans streptococci and also indicate that PCR analysis is suitable for simple, rapid and reliable identification of mutans streptococcal species. 相似文献
32.
33.
Two motifs essential for nuclear import of the hnRNP A1 nucleocytoplasmic shuttling sequence M9 core
Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 regulates mRNA genesis. It shuttles between the nucleus and cytoplasm. Its shuttling signal is a 38-residue sequence M9. We studied the nuclear import and export of M9 by mutational analysis. Heterokaryon assay indicated that the 19-residue sequence SNFGPMKGGNFGGRSSGPY (M9 core) is necessary and sufficient for shuttling. Moreover, M9 core mutation revealed that in addition to the hitherto characterized N-terminal motif SNFGPMK, the C-terminal motif PY is crucial for nuclear import as well as for binding to transportin. Key residues of the motifs are conserved in the shuttling signals of hnRNP D and JKTBP. 相似文献
34.
Murayama K Shirouzu M Kawasaki Y Kato-Murayama M Hanawa-Suetsugu K Sakamoto A Katsura Y Suenaga A Toyama M Terada T Taiji M Akiyama T Yokoyama S 《The Journal of biological chemistry》2007,282(7):4238-4242
The Rac-specific guanine nucleotide exchange factor (GEF) Asef is activated by binding to the tumor suppressor adenomatous polyposis coli mutant, which is found in sporadic and familial colorectal tumors. This activated Asef is involved in the migration of colorectal tumor cells. The GEFs for Rho family GTPases contain the Dbl homology (DH) domain and the pleckstrin homology (PH) domain. When Asef is in the resting state, the GEF activity of the DH-PH module is intramolecularly inhibited by an unidentified mechanism. Asef has a Src homology 3 (SH3) domain in addition to the DH-PH module. In the present study, the three-dimensional structure of Asef was solved in its autoinhibited state. The crystal structure revealed that the SH3 domain binds intramolecularly to the DH domain, thus blocking the Rac-binding site. Furthermore, the RT-loop and the C-terminal region of the SH3 domain interact with the DH domain in a manner completely different from those for the canonical binding to a polyproline-peptide motif. These results demonstrate that the blocking of the Rac-binding site by the SH3 domain is essential for Asef autoinhibition. This may be a common mechanism in other proteins that possess an SH3 domain adjacent to a DH-PH module. 相似文献
35.
Keiichi Nomura Ayako Ikegami Atsuo Koide Fumio Yagi 《Plant Physiology and Biochemistry》2007,45(1):15-23
The annual changes in Japanese chestnut (Castanea crenata Sieb. et Zucc.) agglutinin (CCA) were investigated by both protein and RNA blotting analyses, to clarify whether CCA has a function as storage protein. In the woody part of shoots and leaves, CCA expression was only detected at both the protein and RNA levels in May and June. In buds, the CCA protein and mRNA expressions were both restricted to April. However, the amount of accumulated CCA was too low to act as a nitrogen reserve. No expression was observed in the bark at any time point, suggesting that bark does not contain either CCA or CCA-like proteins. These results suggest that CCA may be required in young organs as a defense protein, rather than as a storage protein. In addition, CCA was not related to dormancy, unlike some other woody plant bark lectins. In contrast to CCA, a 28kDa polypeptide was observed to accumulate during dormancy. Sequence analysis indicated that this polypeptide was a glutathione transferase. After cDNA cloning, RNA blot analyses indicated that this glutathione transferase was strongly expressed in woody parts during mid-winter. In shoots, this protein represented approximately 10% of the total soluble protein content. Therefore, in Japanese chestnut trees, glutathione transferase may play a nitrogen storage role in addition to its intrinsic defensive role against stresses during dormancy. 相似文献
36.
Lerma San Jose-Maldia Asako Matsumoto Saneyoshi Ueno Ayako Kanazashi Munetake Kanno Kanji Namikawa Hiroshi Yoshimaru Yoshihiko Tsumura 《Tree Genetics & Genomes》2017,13(6):121
In this study, we assessed geographic patterns of genetic variations in nuclear and chloroplast genomes of two related native oaks in Japan, Quercus aliena and Q. serrata, in order to facilitate development of genetic guidelines for transfer of planting stocks for each species. A total of 12 populations of Q. aliena and 44 populations of Q. serrata were analyzed in this study. Genotyping of nuclear microsatellites in Q. aliena was done with only nine populations (n = 212) due to limited numbers of individuals in two populations, while all 12 populations (n = 89) were used in sequencing chloroplast DNA (cpDNA). In Q. serrata, 43 populations (n = 1032) were genotyped by nuclear microsatellite markers, while cpDNA of 44 populations (n = 350) was sequenced. As anticipated, geographic patterns detected in the variations of Q. aliena’s nuclear genome and its chloroplast haplotype distribution clearly distinguished northern and southern groups of populations. However, those of Q. serrata were inconsistent. The geographic distribution of its chloroplast haplotypes tends to show the predicted differentiation between northern and southern lineages, but geographic signals in the genetic structure of its nuclear microsatellites are weak. Therefore, treating northern and southern regions of Japan as genetically distinct transferrable zones for planting stocks is highly warranted for Q. aliena. For Q. serrata, the strong NE-SW geographic structure of cpDNA should be considered. 相似文献
37.
The recent development of specific probes for lipid molecules has led to the discovery of lipid domains in bacterial membranes, that is, of membrane areas differing in lipid composition. A view of the membrane as a patchwork is replacing the assumption of lipid homogeneity inherent in the fluid mosaic model of Singer and Nicolson (Science 1972, 175: 720–731). If thus membranes have complex lipid structure, questions arise about how it is generated and maintained, and what its function might be. How do lipid domains relate to the functionally distinct regions in bacterial cells as they are identified by protein localization techniques? This review assesses the current knowledge on the existence of cardiolipin (CL) and phosphatidylethanolamine (PE) domains in bacterial cell membranes and on the specific cellular localization of certain membrane proteins, which include phospholipid synthases, and discusses possible mechanisms, both chemical and physiological, for the formation of the lipid domains. We propose that bacterial membranes contain a mosaic of microdomains of CL and PE, which are to a significant extent self‐assembled according to their respective intrinsic chemical characteristics. We extend the discussion to the possible relevance of the domains to specific cellular processes, including cell division and sporulation. 相似文献
38.
Prolyl 4-Hydroxylation of ��-Fibrinogen: A NOVEL PROTEIN MODIFICATION REVEALED BY PLASMA PROTEOMICS*
Masaya Ono Junichi Matsubara Kazufumi Honda Tomohiro Sakuma Tomoyo Hashiguchi Hiroshi Nose Shoji Nakamori Takuji Okusaka Tomoo Kosuge Naohiro Sata Hideo Nagai Tatsuya Ioka Sachiko Tanaka Akihiko Tsuchida Tatsuya Aoki Masashi Shimahara Yohichi Yasunami Takao Itoi Fuminori Moriyasu Ayako Negishi Hideya Kuwabara Ayako Shoji Setsuo Hirohashi Tesshi Yamada 《The Journal of biological chemistry》2009,284(42):29041-29049
Plasma proteome analysis requires sufficient power to compare numerous samples and detect changes in protein modification, because the protein content of human samples varies significantly among individuals, and many plasma proteins undergo changes in the bloodstream. A label-free proteomics platform developed in our laboratory, termed “Two-Dimensional Image Converted Analysis of Liquid chromatography and mass spectrometry (2DICAL),” is capable of these tasks. Here, we describe successful detection of novel prolyl hydroxylation of α-fibrinogen using 2DICAL, based on comparison of plasma samples of 38 pancreatic cancer patients and 39 healthy subjects. Using a newly generated monoclonal antibody 11A5, we confirmed the increase in prolyl-hydroxylated α-fibrinogen plasma levels and identified prolyl 4-hydroxylase A1 as a key enzyme for the modification. Competitive enzyme-linked immunosorbent assay of 685 blood samples revealed dynamic changes in prolyl-hydroxylated α-fibrinogen plasma level depending on clinical status. Prolyl-hydroxylated α-fibrinogen is presumably controlled by multiple biological mechanisms, which remain to be clarified in future studies.For comprehensive analysis of plasma proteins, it is necessary to compare a sufficient number of blood samples to avoid simple interindividual heterogeneity, because the protein content of human samples varies significantly among individuals. Also, the provision of sufficient power is needed to detect protein modification because many plasma proteins undergo changes in the bloodstream (1). Even though the proteomic technologies have advanced (2, 3), there remains room for improvement. Different isotope labeling and identification-based methods have been developed for quantitative proteomics technologies (4–6), but the number of samples that can be compared by the current isotope-labeling methods is limited, and identification-based proteomics is unable to capture information regarding unknown modifications.A label-free proteomics platform developed in our laboratory, termed “Two-Dimensional Image Converted Analysis of Liquid chromatography and mass spectrometry (2DICAL)2 (7), simply compares the liquid chromatography and mass spectrometry (LC-MS) data and detects a protein modification by finding changes in the mass to charge ratio (m/z) and retention time (RT). Enhanced methods for accurate MS peak alignment across multiple LC runs have enabled the successful implementation of clinical studies requiring comparison of a large number of samples (8, 9). Using 2DICAL to analyze plasma samples of pancreatic cancer patients and healthy controls, novel prolyl hydroxylation of α-fibrinogen was successfully discovered.Fibrinogen and its modification has been investigated because of its clinical importance (10, 11). On the other hand, prolyl hydroxylation has attracted attention after the discovery of the hypoxia-inducible factor 1α (HIF1α) prolyl-hydroxylase and its role in switching of HIF1α functions (12). Prolyl hydroxylation in other proteins has been energetically sought, but only a few such proteins have been identified (13). Only one study has reported prolyl hydroxylation of fibrinogen at the β chain (14).Here, we report the detection of prolyl 4-hydroxylated α-fibrinogen by plasma proteome analysis, a protein modification that dynamically changes in plasma depending on the clinical status and is a candidate plasma biomarker. 相似文献
39.
Keizo Yonemori Chitose Honsho Shinya Kanzaki Hitofumi Ino Ayako Ikegami Akira Kitajima Akira Sugiura Dan E. Parfitt 《Tree Genetics & Genomes》2008,4(2):149-158
To elucidate the relationships among Diospyros kaki and species closely related in previous studies, the nuclear ribosomal internal transcribed spacer (ITS) DNA sequence and
the chloroplast matK gene were sequenced and compared with those of nine Diospyros species from Thailand, four species from temperate regions, and one species of southern Africa, D. lycioides. Maximum parsimony, maximum likelihood, and neighbor joining analyses of the matK and ITS data sets revealed that D. kaki is closely related to two diploid species, D. oleifera and D. glandulosa. D. kaki, D. glandulosa, and D. oleifera were placed differently in the trees obtained from ITS and matK data sets, suggesting that hybridization and/or introgression may have occurred during the development of these species.
D. kaki was not found to be closely related to D. ehretioides, a diploid species from Thailand. These results differed from a prior analysis of this genus performed with chloroplast DNA
(cpDNA) restriction site mutations in 3.2- and 2.1-kb amplified sequences. The results supported Ng’s hypothesis that D. glandulosa and D. kaki may share a common ancestor. D. oleifera was also closely associated with D. kaki. 相似文献
40.