首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1237篇
  免费   79篇
  2022年   16篇
  2021年   17篇
  2020年   8篇
  2019年   14篇
  2018年   21篇
  2017年   30篇
  2016年   36篇
  2015年   42篇
  2014年   59篇
  2013年   79篇
  2012年   103篇
  2011年   100篇
  2010年   56篇
  2009年   63篇
  2008年   82篇
  2007年   96篇
  2006年   87篇
  2005年   81篇
  2004年   64篇
  2003年   71篇
  2002年   55篇
  2001年   3篇
  2000年   8篇
  1999年   8篇
  1998年   16篇
  1997年   21篇
  1996年   9篇
  1995年   15篇
  1994年   13篇
  1993年   1篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1970年   1篇
排序方式: 共有1316条查询结果,搜索用时 984 毫秒
71.
Acetolactate synthase (ALS) is the first common enzyme in the biosynthetic pathway of branched-chain amino acids. Mutations of specific amino acids in ALS have been known to confer resistance to ALS-inhibiting herbicides such as sulfonylureas and pyrimidinyl carboxy (PC) herbicides. However, mutations conferring exclusive resistance to PC have not yet been reported to date. We selected PC resistant rice calli, which were derived from anther culture, using one of the PCs, bispyribac-sodium (BS), as a selection agent. Two lines of BS-resistant plants carrying a novel mutation, the 95th Glycine to Alanine (G95A), in ALS were obtained. In vitro ALS activity assay indicated that the recombinant protein of G95A-mutated ALS (ALS-G95A) conferred highly specific resistance to PC herbicides. In order to determine if the ALS-G95A gene could be used as a selection marker for rice transformation, the ALS-G95A gene was connected to ubiquitin promoter and introduced into rice. PC resistant plants containing integrated ALS-G95A gene were obtained after selection with BS as a selection agent. In conclusion, novel G95A mutated ALS gene confers highly specific resistant to PC-herbicides and can be used as a selection marker.  相似文献   
72.
To understand the pathogenesis and develop an animal model of severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV), the Frankfurt 1 SARS-CoV isolate was passaged serially in young F344 rats. Young rats were susceptible to SARS-CoV but cleared the virus rapidly within 3 to 5 days of intranasal inoculation. After 10 serial passages, replication and virulence of SARS-CoV were increased in the respiratory tract of young rats without clinical signs. By contrast, adult rats infected with the passaged virus showed respiratory symptoms and severe pathological lesions in the lung. Levels of inflammatory cytokines in sera and lung tissues were significantly higher in adult F344 rats than in young rats. During in vivo passage of SARS-CoV, a single amino acid substitution was introduced within the binding domain of the viral spike protein recognizing angiotensin-converting enzyme 2 (ACE2), which is known as a SARS-CoV receptor. The rat-passaged virus more efficiently infected CHO cells expressing rat ACE2 than did the original isolate. These results strongly indicate that host and virus factors such as advanced age and virus adaptation are critical for the development of SARS in rats.  相似文献   
73.
Paracoccidioidomycosis (PCM) is a granulomatous disease caused by a dimorphic fungus, Paracoccidioides brasiliensis. The present study investigated the protective activity of the P. brasiliensis high-molecular-mass (hMM) fraction (~380 kDa) in experimental murine PCM. In the first step, lymphocyte proliferation and production of IFNγ (but not IL-4) were observed in “in vitro” spleen cells (from female BALB/c mice infected (i.v.) with P. brasiliensis) that were stimulated with hMM fractions. In the second step, female BALB/c mice were previously immunized (s.c.) with hMM fraction (25 μg/protein = F-25 and 50 μg/protein = F-50), and the colony-forming units (CFU) of the lung and spleen, the histopathological characteristics of the granulomatous lesions, and plasmatic gp43 soluble antigens and anti-hMM IgG levels were analyzed at 28 and 56 days after infection. The lung and liver CFU were lower in mice previously immunized with the hMM fraction (P < 0.05). The granulomatous lesions revealed a greater degree of compaction and organization, with no dissemination of the fungus to other organs. Lower soluble antigen levels (P < 0.05) and higher IgG anti-hMM fraction (P < 0.05) were observed in immunized groups. The results for CFU, histopathology and antigenemia suggest that the hMM fraction has a protective effect in experimental paracoccidioidomycosis in BALB/c mice.  相似文献   
74.
Leptin, the ob gene product secreted by adipocytes, controls overall energy balance. We previously showed that leptin administration to leptin-deficient obese (ob/ob) mice suppressed mRNA expression and activity of renal 25-hydroxyvitamin D(3)-1alpha-hydroxylase (CYP27B1). In leptin receptor-deficient (db/db) mice, we presently examined whether leptin affects 1alpha-hydroxylase expression in renal tubules through the active form of the leptin receptor (ObRb). Elevated serum concentrations of calcium and 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] in untreated ob/ob mice showed sharp reduction with leptin administration (4 mg/kg, i.p. every 12h for 2 days); no such reduction of elevation occurred in db/db mice. ObRb mRNA was expressed in kidney, brain, fat, lung, and bone in wild-type and ob/ob mice, but not db/db mice. The ob/ob and db/db mice showed large increases in renal 1alpha-hydroxylase mRNA expression and activity. Leptin administration (4 mg/kg) completely abrogated these increases in ob/ob but not db/db mice. Renal 25-hydroxyvitamin D(3)-24-hydroxylase (CYP24) mRNA synthesis also was greatly elevated in ob/ob and db/db mice; excesses decreased significantly with leptin administration in ob/ob mice, but increased in db/db mice. Renal tubular cells in primary culture expressed mRNAs including proximal tubules markers (1alpha-hydroxylase and megalin), parathyroid hormone receptor, and vitamin D receptor. Calcitonin receptor mRNA, synthesized mainly in distal tubules, was scant, indicating that most cultured cells were from proximal tubules. Cells did not express ObRb mRNA. Forskolin exposure at 10(-6)M for 3 or 6h significantly increased 1alpha-hydroxylase mRNA. Leptin at 10(-6)M did not change mRNA expression in either presence or absence of forskolin. Accordingly, leptin attenuates renal 1alpha-hydroxylase gene expression through ObRb. Furthermore, leptin appears to act indirectly on renal proximal tubules to regulate 1alpha-hydroxylase gene expression.  相似文献   
75.
The annual changes in Japanese chestnut (Castanea crenata Sieb. et Zucc.) agglutinin (CCA) were investigated by both protein and RNA blotting analyses, to clarify whether CCA has a function as storage protein. In the woody part of shoots and leaves, CCA expression was only detected at both the protein and RNA levels in May and June. In buds, the CCA protein and mRNA expressions were both restricted to April. However, the amount of accumulated CCA was too low to act as a nitrogen reserve. No expression was observed in the bark at any time point, suggesting that bark does not contain either CCA or CCA-like proteins. These results suggest that CCA may be required in young organs as a defense protein, rather than as a storage protein. In addition, CCA was not related to dormancy, unlike some other woody plant bark lectins. In contrast to CCA, a 28kDa polypeptide was observed to accumulate during dormancy. Sequence analysis indicated that this polypeptide was a glutathione transferase. After cDNA cloning, RNA blot analyses indicated that this glutathione transferase was strongly expressed in woody parts during mid-winter. In shoots, this protein represented approximately 10% of the total soluble protein content. Therefore, in Japanese chestnut trees, glutathione transferase may play a nitrogen storage role in addition to its intrinsic defensive role against stresses during dormancy.  相似文献   
76.
In spite of their great importance for both applied and basic biology, studies on vesicular trafficking in filamentous fungi have been so far very limited. Here, we identified 21 genes, which might be a total set, encoding putative SNARE proteins that are key factors for vesicular trafficking, taking advantage of available whole genome sequence in the filamentous fungus Aspergillus oryzae. The subsequent systematic analysis to determine the localization of putative SNAREs using EGFP-fused chimeras revealed that most putative SNAREs show similar subcellular distribution to their counterparts in the budding yeast. However, there existed some characteristic features of SNAREs in A. oryzae, such as SNARE localization at/near the septum and the presence of apparently non-redundant plasma membrane Qa-SNAREs. Overall, this analysis allowed us to provide an overview of vesicular trafficking and organelle distribution in A. oryzae.  相似文献   
77.
Placental dysfunction underlies many complications during pregnancy, and better understanding of gene function during placentation could have considerable clinical relevance. However, the lack of a facile method for placenta-specific gene manipulation has hampered investigation of placental organogenesis and the treatment of placental dysfunction. We showed previously that transduction of fertilized mouse eggs with lentiviral vectors leads to transgene expression in both the fetus and the placenta. Here we report placenta-specific gene incorporation by lentiviral transduction of mouse blastocysts after removal of the zona pellucida. All of the placentas analyzed, but none of the fetuses, were transgenic. Application of this method substantially rescued mice deficient in Ets2, Mapk14 (also known as p38alpha) and Mapk1 (also known as Erk2) from embryonic lethality caused by placental defects. Ectopic expression of Mapk11 also complemented Mapk14 deficiency during placentation.  相似文献   
78.
In fission yeast, knockout of the calcineurin gene resulted in hypersensitivity to Cl(-), and the overexpression of pmp1(+) encoding a dual-specificity phosphatase for Pmk1 mitogen-activated protein kinase (MAPK) or the knockout of the components of the Pmk1 pathway complemented the Cl(-) hypersensitivity of calcineurin deletion. Here, we showed that the overexpression of ptc1(+) and ptc3(+), both encoding type 2C protein phosphatase (PP2C), previously known to inactivate the Wis1-Spc1-Atf1 stress-activated MAPK signaling pathway, suppressed the Cl(-) hypersensitivity of calcineurin deletion. We also demonstrated that the mRNA levels of these two PP2Cs and pyp2(+), another negative regulator of Spc1, are dependent on Pmk1. Notably, the deletion of Atf1, but not that of Spc1, displayed hypersensitivity to the cell wall-damaging agents and also suppressed the Cl(-) hypersensitivity of calcineurin deletion, both of which are characteristic phenotypes shared by the mutation of the components of the Pmk1 MAPK pathway. Moreover, micafungin treatment induced Pmk1 hyperactivation that resulted in Atf1 hyperphosphorylation. Together, our results suggest that PP2C is involved in a negative feedback loop of the Pmk1 signaling, and results also demonstrate that Atf1 is a key component of the cell integrity signaling downstream of Pmk1 MAPK.  相似文献   
79.
The structural maintenance of chromosomes (SMC) family proteins (Smc1-Smc6) typically consist of two coiled-coil domains, an amino-terminal head domain, and a carboxyl-terminal tail domain. Rad50, a component of the Mre11/Rad50/Xrs2 (MRX) complex, has a similar domain structure to the SMC proteins. In Saccharomyces cerevisiae, the MRX complex appears to be essential for recombination between homologous chromosomes in meiotic cells, but not in cells undergoing vegetative growth. Here we provide for the first time evidence that Rad50, like Smc6, is required for the induction of recombination between homologous chromosomes in cells in the vegetative growth state upon exposure to methyl methanesulfonate. However, UV-induced recombination between homologous chromosomes is intact in both rad50 and smc6-56 mutant cells.  相似文献   
80.
To understand the telomere regulation mechanism in relation to cell aging and cancer, we examined the single-stranded telomeric DNA binding domain (ssDBD) of fission yeast telomere-binding protein Pot1 by constructing a series of deletion mutants. We found that Pot1(1-182) (amino acids 1-182) stably expressed in Escherichia coli without any degradation retained a stable folded structure and functional telomeric DNA binding activity, indicating that Pot1(1-182) corresponds to ssDBD. We investigated the amino acids of Pot1(1-182) involved in single-stranded telomeric DNA recognition by constructing a series of site-directed mutants. Although the previously reported X-ray crystallographic structure suggests that 12 amino acids contact the telomeric DNA, an electrophoretic mobility shift assay and isothermal titration calorimetry analyses of the binding ability of the site-directed mutants indicated that only five amino acids significantly contributed to telomeric DNA recognition. We conclude that the contribution to recognition is quite different in magnitude among the amino acids judged to contact the target by X-ray crystallographic structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号