首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1194篇
  免费   79篇
  1273篇
  2022年   18篇
  2021年   17篇
  2020年   8篇
  2019年   14篇
  2018年   20篇
  2017年   30篇
  2016年   36篇
  2015年   42篇
  2014年   59篇
  2013年   75篇
  2012年   103篇
  2011年   99篇
  2010年   54篇
  2009年   62篇
  2008年   81篇
  2007年   93篇
  2006年   86篇
  2005年   78篇
  2004年   62篇
  2003年   68篇
  2002年   52篇
  2001年   3篇
  2000年   7篇
  1999年   7篇
  1998年   16篇
  1997年   21篇
  1996年   9篇
  1995年   14篇
  1994年   11篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1970年   1篇
排序方式: 共有1273条查询结果,搜索用时 15 毫秒
61.
IL-25, IL-33 and TSLP, which are produced predominantly by epithelial cells, can induce production of Th2-type cytokines such as IL-4, IL-5 and/or IL-13 by various types of cells, suggesting their involvement in induction of Th2-type cytokine-associated immune responses. It is known that Th2-type cytokines contribute to host defense against malaria parasite infection in mice. However, the roles of IL-25, IL-33 and TSLP in malaria parasite infection remain unclear. Thus, to elucidate this, we infected wild-type, IL-25?/?, IL-33?/? and TSLP receptor (TSLPR)?/? mice with Plasmodium berghei (P. berghei) ANKA, a murine malaria strain. The expression levels of IL-25, IL-33 and TSLP mRNA were changed in the brain, liver, lung and spleen of wild-type mice after infection, suggesting that these cytokines are involved in host defense against P. berghei ANKA. However, the incidence of parasitemia and survival in the mutant mice were comparable to in the wild-type mice. These findings indicate that IL-25, IL-33 and TSLP are not critical for host defense against P. berghei ANKA.  相似文献   
62.
Although children with epilepsy exhibit numerous neurological and cognitive deficits, the mechanisms underlying these impairments remain unclear. Synchronization of oscillatory neural activity in the gamma frequency range (>30 Hz) is purported to be a mechanism mediating functional integration within neuronal networks supporting cognition, perception and action. Here, we tested the hypothesis that seizure-induced alterations in gamma synchronization are associated with functional deficits. By calculating synchrony among electrodes and performing graph theoretical analysis, we assessed functional connectivity and local network structure of the hand motor area of children with focal epilepsy from intracranial electroencephalographic recordings. A local decrease in inter-electrode phase synchrony in the gamma bands during ictal periods, relative to interictal periods, within the motor cortex was strongly associated with clinical motor weakness. Gamma-band ictal desychronization was a stronger predictor of deficits than the presence of the seizure-onset zone or lesion within the motor cortex. There was a positive correlation between the magnitude of ictal desychronization and impairment of motor dexterity in the contralateral, but not ipsilateral hand. There was no association between ictal desynchronization within the hand motor area and non-motor deficits. This study uniquely demonstrates that seizure-induced disturbances in cortical functional connectivity are associated with network-specific neurological deficits.  相似文献   
63.
The C. elegans eat-3 gene encodes a mitochondrial dynamin family member homologous to Opa1 in humans and Mgm1 in yeast. We find that mutations in the C. elegans eat-3 locus cause mitochondria to fragment in agreement with the mutant phenotypes observed in yeast and mammalian cells. Electron microscopy shows that the matrices of fragmented mitochondria in eat-3 mutants are divided by inner membrane septae, suggestive of a specific defect in fusion of the mitochondrial inner membrane. In addition, we find that C. elegans eat-3 mutant animals are smaller, grow slower, and have smaller broodsizes than C. elegans mutants with defects in other mitochondrial fission and fusion proteins. Although mammalian Opa1 is antiapoptotic, mutations in the canonical C. elegans cell death genes ced-3 and ced-4 do not suppress the slow growth and small broodsize phenotypes of eat-3 mutants. Instead, the phenotypes of eat-3 mutants are consistent with defects in oxidative phosphorylation. Moreover, eat-3 mutants are hypersensitive to paraquat, which promotes damage by free radicals, and they are sensitive to loss of the mitochondrial superoxide dismutase sod-2. We conclude that free radicals contribute to the pathology of C. elegans eat-3 mutants.  相似文献   
64.
Although the central nervous system is considered a comparatively static tissue with limited cell turnover, cells with stem cell properties have been isolated from most neural tissues. The spinal cord ependymal cells show neural stem cell potential in vitro and in vivo in injured spinal cord. However, very little is known regarding the ependymal niche in the mouse spinal cord. We previously reported that a secreted factor, chick Akhirin, is expressed in the ciliary marginal zone of the eye, where it works as a heterophilic cell‐adhesion molecule. Here, we describe a new crucial function for mouse Akhirin (M‐AKH) in regulating the proliferation and differentiation of progenitors in the mouse spinal cord. During embryonic spinal cord development, M‐AKH is transiently expressed in the central canal ependymal cells, which possess latent neural stem cell properties. Targeted inactivation of the AKH gene in mice causes a reduction in the size of the spinal cord and decreases BrdU incorporation in the spinal cord. Remarkably, the expression patterns of ependymal niche molecules in AKH knockout (AKH?/?) mice are different from those of AKH+/+, both in vitro and in vivo. Furthermore, we provide evidence that AKH expression in the central canal is rapidly upregulated in the injured spinal cord. Taken together, these results indicate that M‐AKH plays a crucial role in mouse spinal cord formation by regulating the ependymal niche in the central canal. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 494–504, 2015  相似文献   
65.
The release of cytochrome c from mitochondria, which is regulated by Bcl-2 family members and is considered to take place through voltage-dependent anion channels (VDACs) on the outer membranes of mitochondria, results in activation of effector caspases, such as caspase-3, which induce apoptosis. We studied the involvement of the mitochondrial apoptosis pathway in uterine epithelial apoptosis. Estradiol-17beta pellets were implanted into ovariectomized mice and removed 4 days later (Day 0). The apoptotic index (percentage of apoptotic cells) of the luminal epithelium increased markedly, peaking on Day 2, whereas that of the glandular epithelium increased much less. Expression of VDAC1, 2, and 3 mRNAs increased in the luminal epithelium in correlation with the apoptotic index of the luminal epithelium. No increases in VDAC1, 2, and 3 mRNA levels were observed in the stroma or muscle, where no apoptosis occurs. VDAC1 protein levels in the uterus also correlated well with the apoptotic index of the luminal epithelium. In addition, the apoptotic index showed good correlation with the release of cytochrome c from mitochondria, activation of caspase-3, which was immunohistochemically detected only in the epithelium, and the mRNA and protein ratios of Bax:Bcl-2 and Bax:Bcl-X in the uterus. The present results suggest that the release of cytochrome c from mitochondria, which is regulated by Bcl-2 family members, plays a role in uterine epithelial apoptosis after estrogen deprivation. The increase in VDAC expression may facilitate the release of cytochrome c during apoptosis.  相似文献   
66.
67.
Modification of cytosine plays an important role in epigenetic regulation of gene expression and genome stability. Cytosine is converted to 5-methylcytosine (5mC) by DNA methyltransferase; in turn, 5mC may be oxidized to 5-hydroxymethylcytosine (5hmC) by ten-eleven translocation enzyme. The structural flexibility of DNA is known to affect the binding of proteins to methylated DNA. Here, we have carried out a semi-quantitative analysis of the dynamics of double-stranded DNA (dsDNA) containing various epigenetic modifications by combining data from imino 1H exchange and imino 1H R relaxation dispersion NMR experiments in a complementary way. Using this approach, we characterized the base-opening (kopen) and base-closing (kclose) rates, facilitating a comparison of the base-opening and -closing process of dsDNA containing cytosine in different states of epigenetic modification. A particularly striking result is the increase in the kopen rate of hemi-methylated dsDNA 5mC/C relative to unmodified or fully methylated dsDNA, indicating that the Watson–Crick base pairs undergo selective destabilization in 5mC/C. Collectively, our findings imply that the epigenetic modulation of cytosine dynamics in dsDNA mediates destabilization of the GC Watson–Crick base pair to allow base-flipping in living cells.  相似文献   
68.
Bacteriorhodopsin (bR) is the prototype of an integral membrane protein with seven membrane-spanning α-helices and serves as a model of the G-protein-coupled drug receptors. This study is aimed at reaching a greater understanding of the role of amine local anesthetic cations on the proton transport in the bR protein, and furthermore, the functional role of “the cation” in the proton pumping mechanism. The effect of the amine anesthetic cations on the proton pump in the bR blue membrane was compared with those by divalent (Ca2+, Mg2+ and Mn2+) and monovalent metal cations (Li+, Na+, K+ and Cs+), which are essential for the correct functioning of the proton pumping of the bR protein. The results suggest that the interacting site of the divalent cation to the bR membrane may differ from that of the monovalent metal cation. The electric current profile of the bR blue membrane in the presence of the amine anesthetic cations was biphasic, involving the generation and inhibition of the proton pumping activity in a concentration-dependent manner. The extent of the regeneration of the proton pump by the additives increased in the order of monovalent metal cation<monovalent amine anesthetic cation<divalent metal cation. We found that organic cations such as the amine anesthetics can also regenerate the proton pump in the bR protein. The inhibition of proton transport in the bR protein by the anesthetic cations was elucidated using the wild type, the E204Q and the D96N mutated bRs. The hydrophobic interaction of the amine anesthetics with the bR protein plays an important part in inhibiting the bR proton pump.  相似文献   
69.
The Bhas promotion assay is a cell culture transformation assay designed as a sensitive and economical method for detecting the tumour-promoting activities of chemicals. In order to validate the transferability and applicability of this assay, an inter-laboratory collaborative study was conducted with the participation of 14 laboratories. After confirmation that these laboratories could obtain positive results with two tumour promoters, 12-O-tetradecanoylphorbol-13-acetate (TPA) and lithocholic acid (LCA), 12 coded chemicals were assayed. Each chemical was tested in four laboratories. For eight chemicals, all four laboratories obtained consistent results, and for two of the other four chemicals, only one of the four laboratories showed inconsistent results. Thus, the rate of consistency was high. During the study, several issues were raised, each of which were analysed step-by-step, leading to revision of the protocol of the original assay. Among these issues were the importance of careful maintenance of mother cultures and the adoption of test concentrations for toxic chemicals. In addition, it is suggested that three different types of chemicals show positive promoting activity in the assay. Those designated as T-type induced extreme growth enhancement, and included TPA, mezerein, PDD and insulin. LCA and okadaic acid belonged to the L-type category, in which transformed foci were induced at concentrations showing growth-inhibition. In contrast, M-type chemicals, progesterone, catechol and sodium saccharin, induced foci at concentrations with little or slight growth inhibition. The fact that different types of chemicals similarly induce transformed foci in the Bhas promotion assay may provide clues for elucidating mechanisms of tumour promotion.  相似文献   
70.
In fission yeast, knockout of the calcineurin gene resulted in hypersensitivity to Cl(-), and the overexpression of pmp1(+) encoding a dual-specificity phosphatase for Pmk1 mitogen-activated protein kinase (MAPK) or the knockout of the components of the Pmk1 pathway complemented the Cl(-) hypersensitivity of calcineurin deletion. Here, we showed that the overexpression of ptc1(+) and ptc3(+), both encoding type 2C protein phosphatase (PP2C), previously known to inactivate the Wis1-Spc1-Atf1 stress-activated MAPK signaling pathway, suppressed the Cl(-) hypersensitivity of calcineurin deletion. We also demonstrated that the mRNA levels of these two PP2Cs and pyp2(+), another negative regulator of Spc1, are dependent on Pmk1. Notably, the deletion of Atf1, but not that of Spc1, displayed hypersensitivity to the cell wall-damaging agents and also suppressed the Cl(-) hypersensitivity of calcineurin deletion, both of which are characteristic phenotypes shared by the mutation of the components of the Pmk1 MAPK pathway. Moreover, micafungin treatment induced Pmk1 hyperactivation that resulted in Atf1 hyperphosphorylation. Together, our results suggest that PP2C is involved in a negative feedback loop of the Pmk1 signaling, and results also demonstrate that Atf1 is a key component of the cell integrity signaling downstream of Pmk1 MAPK.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号