首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2906篇
  免费   281篇
  国内免费   1篇
  3188篇
  2023年   11篇
  2022年   24篇
  2021年   67篇
  2020年   35篇
  2019年   31篇
  2018年   50篇
  2017年   46篇
  2016年   86篇
  2015年   154篇
  2014年   153篇
  2013年   174篇
  2012年   221篇
  2011年   197篇
  2010年   139篇
  2009年   112篇
  2008年   163篇
  2007年   192篇
  2006年   169篇
  2005年   192篇
  2004年   173篇
  2003年   152篇
  2002年   152篇
  2001年   31篇
  2000年   27篇
  1999年   33篇
  1998年   56篇
  1997年   24篇
  1996年   36篇
  1995年   22篇
  1994年   31篇
  1993年   24篇
  1992年   19篇
  1991年   12篇
  1990年   10篇
  1988年   11篇
  1987年   16篇
  1986年   11篇
  1985年   12篇
  1984年   7篇
  1983年   5篇
  1982年   14篇
  1981年   10篇
  1979年   11篇
  1978年   6篇
  1977年   7篇
  1976年   11篇
  1975年   10篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
排序方式: 共有3188条查询结果,搜索用时 0 毫秒
61.
A method for the prediction of hydrogen positions in proteins is presented. The method is based on the knowledge of the heavy atom positions obtained, for instance, from X-ray crystallography. It employs an energy minimization limited to the environment of the hydrogen atoms bound to a common heavy atom or to a single water molecule. The method is not restricted to proteins and can be applied without modification to nonpolar hydrogens and to nucleic acids. The method has been applied to the neutron diffraction structures of trypsin ribonuclease A, and bovine pancreatic trypsin inhibitor. A comparison of the constructed and the observed hydrogen positions shows few deviations except in situations in which several energetically similar conformations are possible. Analysis of the potential energy of rotation of Lys amino and Ser, Thr, Tyr hydroxyl groups reveals that the conformations of lowest intrinsic torsion energies are statistically favored in both the crystal and the constructed structures.  相似文献   
62.
63.
64.
Escherichia coli nitrate reductase A (NarGHI) is a membrane-bound enzyme that couples quinol oxidation at a periplasmically oriented Q-site (QD) to proton release into the periplasm during anaerobic respiration. To elucidate the molecular mechanism underlying such a coupling, endogenous menasemiquinone-8 intermediates stabilized at the QD site (MSQD) of NarGHI have been studied by high-resolution pulsed EPR methods in combination with 1H2O/2H2O exchange experiments. One of the two non-exchangeable proton hyperfine couplings resolved in hyperfine sublevel correlation (HYSCORE) spectra of the radical displays characteristics typical from quinone methyl protons. However, its unusually small isotropic value reflects a singularly low spin density on the quinone carbon α carrying the methyl group, which is ascribed to a strong asymmetry of the MSQD binding mode and consistent with single-sided hydrogen bonding to the quinone oxygen O1. Furthermore, a single exchangeable proton hyperfine coupling is resolved, both by comparing the HYSCORE spectra of the radical in 1H2O and 2H2O samples and by selective detection of the exchanged deuterons using Q-band 2H Mims electron nuclear double resonance (ENDOR) spectroscopy. Spectral analysis reveals its peculiar characteristics, i.e. a large anisotropic hyperfine coupling together with an almost zero isotropic contribution. It is assigned to a proton involved in a short ∼1.6 Å in-plane hydrogen bond between the quinone O1 oxygen and the Nδ of the His-66 residue, an axial ligand of the distal heme bD. Structural and mechanistic implications of these results for the electron-coupled proton translocation mechanism at the QD site are discussed, in light of the unusually high thermodynamic stability of MSQD.  相似文献   
65.
We have developed a genetic approach to examine the role of spontaneous activity and synaptic release in the establishment and maintenance of an olfactory sensory map. Conditional expression of tetanus toxin light chain, a molecule that inhibits synaptic release, does not perturb targeting during development, but neurons that express this molecule in a competitive environment fail to maintain appropriate synaptic connections and disappear. Overexpression of the inward rectifying potassium channel, Kir2.1, diminishes the excitability of sensory neurons and more severely disrupts the formation of an olfactory map. These studies suggest that spontaneous neural activity is required for the establishment and maintenance of the precise connectivity inherent in an olfactory sensory map.  相似文献   
66.

Background

Pancreatic ductal adenocarcinoma (PDAC) remains an important cause of cancer death. Changes in apoptosis signaling in pancreatic cancer result in chemotherapy resistance and aggressive growth and metastasizing. The aim of this study was to characterize the apoptosis pathway in pancreatic cancer computationally by evaluation of experimental data from high-throughput technologies and public data bases. Therefore, gene expression analysis of microdissected pancreatic tumor tissue was implemented in a model of the apoptosis pathway obtained by computational protein interaction prediction.

Methodology/Principal Findings

Apoptosis pathway related genes were assembled from electronic databases. To assess expression of these genes we constructed a virtual subarray from a whole genome analysis from microdissected native tumor tissue. To obtain a model of the apoptosis pathway, interactions of members of the apoptosis pathway were analysed using public databases and computational prediction of protein interactions. Gene expression data were implemented in the apoptosis pathway model. 19 genes were found differentially expressed and 12 genes had an already known pathophysiological role in PDAC, such as Survivin/BIRC5, BNIP3 and TNF-R1. Furthermore we validated differential expression of IL1R2 and Livin/BIRC7 by RT-PCR and immunohistochemistry. Implementation of the gene expression data in the apoptosis pathway map suggested two higher level defects of the pathway at the level of cell death receptors and within the intrinsic signaling cascade consistent with references on apoptosis in PDAC. Protein interaction prediction further showed possible new interactions between the single pathway members, which demonstrate the complexity of the apoptosis pathway.

Conclusions/Significance

Our data shows that by computational evaluation of public accessible data an acceptable virtual image of the apoptosis pathway might be given. By this approach we could identify two higher level defects of the apoptosis pathway in PDAC. We could further for the first time identify IL1R2 as possible candidate gene in PDAC.  相似文献   
67.
68.
69.
PTP20, also known as HSCF/protein-tyrosine phosphatase K1/fetal liver phosphatase 1/brain-derived phosphatase 1, is a cytosolic protein-tyrosine phosphatase with currently unknown biological relevance. We have identified that the nonreceptor protein-tyrosine kinase Tec-phosphorylated PTP20 on tyrosines and co-immunoprecipitated with the phosphatase in a phosphotyrosine-dependent manner. The interaction between the two proteins involved the Tec SH2 domain and the C-terminal tyrosine residues Tyr-281, Tyr-303, Tyr-354, and Tyr-381 of PTP20, which were also necessary for tyrosine phosphorylation/dephosphorylation. Association between endogenous PTP20 and Tec was also tyrosine phosphorylation-dependent in the immature B cell line Ramos. Finally, the Tyr-281 residue of PTP20 was shown to be critical for deactivating Tec in Ramos cells upon B cell receptor ligation as well as dephosphorylation and deactivation of Tec and PTP20 itself in transfected COS7 cells. Taken together, PTP20 appears to play a negative role in Tec-mediated signaling, and Tec-PTP20 interaction might represent a negative feedback mechanism.  相似文献   
70.
Summary Leu-enkephalin containing secretory granules were demonstrated in axon terminals of immunogoldlabeled electron-microscopic sections of the sinus gland of three brachyuran crustaceans. These granules have a diameter of 120+-15 nm and differ in electron density from those located in adjacent terminals containing hyperglycemic or molt-inhibiting hormone. These neurohormones do not show co-localization with leu-enkephalin. The cross-reactivity of leu-enkephalin antiserum with met-enkephalin is less than 1%. The sinus glands of the three species examined show no immunoreactivity for FMRF-amide. A modulatory activity of endogenous enkephalin by paracrine mechanisms is suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号