首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2907篇
  免费   281篇
  国内免费   1篇
  3189篇
  2023年   11篇
  2022年   24篇
  2021年   67篇
  2020年   34篇
  2019年   31篇
  2018年   50篇
  2017年   46篇
  2016年   86篇
  2015年   155篇
  2014年   153篇
  2013年   174篇
  2012年   221篇
  2011年   197篇
  2010年   139篇
  2009年   112篇
  2008年   163篇
  2007年   193篇
  2006年   169篇
  2005年   192篇
  2004年   173篇
  2003年   152篇
  2002年   152篇
  2001年   31篇
  2000年   27篇
  1999年   33篇
  1998年   56篇
  1997年   24篇
  1996年   36篇
  1995年   22篇
  1994年   31篇
  1993年   24篇
  1992年   19篇
  1991年   12篇
  1990年   10篇
  1988年   11篇
  1987年   16篇
  1986年   11篇
  1985年   12篇
  1984年   7篇
  1983年   5篇
  1982年   14篇
  1981年   10篇
  1979年   11篇
  1978年   6篇
  1977年   7篇
  1976年   11篇
  1975年   10篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
排序方式: 共有3189条查询结果,搜索用时 0 毫秒
51.

Background

Pancreatic ductal adenocarcinoma (PDAC) remains an important cause of cancer death. Changes in apoptosis signaling in pancreatic cancer result in chemotherapy resistance and aggressive growth and metastasizing. The aim of this study was to characterize the apoptosis pathway in pancreatic cancer computationally by evaluation of experimental data from high-throughput technologies and public data bases. Therefore, gene expression analysis of microdissected pancreatic tumor tissue was implemented in a model of the apoptosis pathway obtained by computational protein interaction prediction.

Methodology/Principal Findings

Apoptosis pathway related genes were assembled from electronic databases. To assess expression of these genes we constructed a virtual subarray from a whole genome analysis from microdissected native tumor tissue. To obtain a model of the apoptosis pathway, interactions of members of the apoptosis pathway were analysed using public databases and computational prediction of protein interactions. Gene expression data were implemented in the apoptosis pathway model. 19 genes were found differentially expressed and 12 genes had an already known pathophysiological role in PDAC, such as Survivin/BIRC5, BNIP3 and TNF-R1. Furthermore we validated differential expression of IL1R2 and Livin/BIRC7 by RT-PCR and immunohistochemistry. Implementation of the gene expression data in the apoptosis pathway map suggested two higher level defects of the pathway at the level of cell death receptors and within the intrinsic signaling cascade consistent with references on apoptosis in PDAC. Protein interaction prediction further showed possible new interactions between the single pathway members, which demonstrate the complexity of the apoptosis pathway.

Conclusions/Significance

Our data shows that by computational evaluation of public accessible data an acceptable virtual image of the apoptosis pathway might be given. By this approach we could identify two higher level defects of the apoptosis pathway in PDAC. We could further for the first time identify IL1R2 as possible candidate gene in PDAC.  相似文献   
52.
We have developed a genetic approach to examine the role of spontaneous activity and synaptic release in the establishment and maintenance of an olfactory sensory map. Conditional expression of tetanus toxin light chain, a molecule that inhibits synaptic release, does not perturb targeting during development, but neurons that express this molecule in a competitive environment fail to maintain appropriate synaptic connections and disappear. Overexpression of the inward rectifying potassium channel, Kir2.1, diminishes the excitability of sensory neurons and more severely disrupts the formation of an olfactory map. These studies suggest that spontaneous neural activity is required for the establishment and maintenance of the precise connectivity inherent in an olfactory sensory map.  相似文献   
53.
54.
55.
56.
Escherichia coli nitrate reductase A (NarGHI) is a membrane-bound enzyme that couples quinol oxidation at a periplasmically oriented Q-site (QD) to proton release into the periplasm during anaerobic respiration. To elucidate the molecular mechanism underlying such a coupling, endogenous menasemiquinone-8 intermediates stabilized at the QD site (MSQD) of NarGHI have been studied by high-resolution pulsed EPR methods in combination with 1H2O/2H2O exchange experiments. One of the two non-exchangeable proton hyperfine couplings resolved in hyperfine sublevel correlation (HYSCORE) spectra of the radical displays characteristics typical from quinone methyl protons. However, its unusually small isotropic value reflects a singularly low spin density on the quinone carbon α carrying the methyl group, which is ascribed to a strong asymmetry of the MSQD binding mode and consistent with single-sided hydrogen bonding to the quinone oxygen O1. Furthermore, a single exchangeable proton hyperfine coupling is resolved, both by comparing the HYSCORE spectra of the radical in 1H2O and 2H2O samples and by selective detection of the exchanged deuterons using Q-band 2H Mims electron nuclear double resonance (ENDOR) spectroscopy. Spectral analysis reveals its peculiar characteristics, i.e. a large anisotropic hyperfine coupling together with an almost zero isotropic contribution. It is assigned to a proton involved in a short ∼1.6 Å in-plane hydrogen bond between the quinone O1 oxygen and the Nδ of the His-66 residue, an axial ligand of the distal heme bD. Structural and mechanistic implications of these results for the electron-coupled proton translocation mechanism at the QD site are discussed, in light of the unusually high thermodynamic stability of MSQD.  相似文献   
57.
Iron is one of the most important micronutrients for plants. Like other organisms, plants have developed active mechanisms for the acquisition of sufficient iron from the soil. Nevertheless, very little is known about the genetic mechanisms that control the active uptake. In tomato, two spontaneously derived mutants are available, which are defective in key steps that control this process. The recessive mutationchloronerva (chln) affects a gene which controls the synthesis of the non-protein amino acid nicotianamine (NA), a key component in the iron physiology of plants. The root system of the recessive mutantfer is unable to induce any of the characteristic responses to iron deficiency and iron uptake is thus completely blocked. We present a characterization of the double mutant, showing that thefer gene is epistatic over thechln gene and thus very likely to be one of the major genetic elements controlling iron physiology in tomato. In order to gain access to these two genes at the molecular level, both mutants were precisely mapped onto the high density RFLP map of tomato. Thechln gene is located on chromosome 1 and thefer gene is on chromosome 6 of tomato. Using this high-resolution map, a chromosome walk has been started to isolate thefer gene by map-based cloning. The isolation of thefer gene will provide new insights into the molecular mechanisms of iron uptake control in plants.  相似文献   
58.
This study reports a comparative analysis of the topological properties of inner cavities and the intrinsic dynamics of non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana. The two proteins belong to the 3/3 globin fold and have a sequence identity of about 60%. However, it is widely assumed that they have distinct physiological roles. In order to investigate the structure–function relationships in these proteins, we have examined the bis-histidyl and ligand-bound hexacoordinated states by atomistic simulations using in silico structural models. The results allow us to identify two main pathways to the distal cavity in the bis-histidyl hexacoordinated proteins. Nevertheless, a larger accessibility to small gaseous molecules is found in AHb2. This effect can be attributed to three factors: the mutation Leu35(AHb1) → Phe32(AHb2), the enhanced flexibility of helix B, and the more favorable energetic profile for ligand migration to the distal cavity. The net effect of these factors would be to facilitate the access of ligands, thus compensating the preference for the fully hexacoordination of AHb2, in contrast to the equilibrium between hexa- and pentacoordinated species in AHb1. On the other hand, binding of the exogenous ligand introduces distinct structural changes in the two proteins. A well-defined tunnel is formed in AHb1, which might be relevant to accomplish the proposed NO detoxification reaction. In contrast, no similar tunnel is found in AHb2, which can be ascribed to the reduced flexibility of helix E imposed by the larger number of salt bridges compared to AHb1. This feature would thus support the storage and transport functions proposed for AHb2. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号