首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   45篇
  469篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2019年   2篇
  2018年   7篇
  2017年   2篇
  2016年   5篇
  2015年   8篇
  2014年   12篇
  2013年   20篇
  2012年   27篇
  2011年   32篇
  2010年   24篇
  2009年   20篇
  2008年   20篇
  2007年   26篇
  2006年   41篇
  2005年   19篇
  2004年   19篇
  2003年   23篇
  2002年   27篇
  2001年   10篇
  2000年   10篇
  1999年   13篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   6篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   6篇
  1975年   3篇
  1974年   1篇
  1973年   3篇
  1969年   1篇
排序方式: 共有469条查询结果,搜索用时 0 毫秒
21.
Galectin-3 and metastasis   总被引:17,自引:0,他引:17  
Galectin-3, a 31 kDa member of the beta-galactoside-binding proteins, is an intracellular and extracellular lectin which interacts with intracellular glycoproteins, cell surface molecules and extracellular matrix proteins. Galectin-3 is expressed widely in epithelial and immune cells and its expression is correlated with cancer aggressiveness and metastasis. Galectin-3 is involved in various biological phenomena including cell growth, adhesion, differentiation, angiogenesis and apoptosis. Recent research revealed that galectin-3 is associated with several steps of invasion and metastasis, like angiogenesis, cell-matrix interaction, dissemination through blood flow and extravasation. Recently, we and others have shown that galectin-3 can be a reliable diagnostic marker in certain cancers and one of the target proteins of cancer treatment. In this review, we describe the involvement of galectin-3 in each steps of metastasis and clinical significance of galectin-3.  相似文献   
22.
A tomato EST sequence, highly homologous to the human and Arabidopsis thaliana UV-damaged DNA binding protein 1 (DDB1), was mapped to the centromeric region of the tomato chromosome 2. This region was previously shown to harbor the HP-1 gene, encoding the high pigment-1 (hp-1) and the high pigment-1w (hp-1w) mutant phenotypes. Recent results also show that the A. thaliana DDB1 protein interacts both genetically and biochemically with the protein encoded by DEETIOLATED1, a gene carrying three tomato mutations that are in many respects isophenotypic to hp-1: high pigment-2 (hp-2), high pigment-2j (hp-2j) and dark green (dg). The entire coding region of the DDB1 gene was sequenced in an hp-1 mutant and its near-isogenic normal plant in the cv. Ailsa Craig background, and also in an hp-1w mutant and its isogenic normal plant in the GT breeding line background. Sequence analysis revealed a single A931-to-T931 base transversion in the coding sequence of the DDB1 gene in the hp-1 mutant plants. This transversion results in the substitution of the conserved asparagine at position 311 to a tyrosine residue. In the hp-1w mutant, on the other hand, a single G2392-to-A2392 transition was observed, resulting in the substitution of the conserved glutamic acid at position 798 to a lysine residue. The single nucleotide polymorphism that differentiates hp-1 mutant and normal plants in the cv. Ailsa Craig background was used to design a pyrosequencing genotyping system. Analysis of a resource F2 population segregating for the hp-1 mutation revealed a very strong linkage association between the DDB1 locus and the photomorphogenic response of the seedlings, measured as hypocotyl length (25<LOD score<26, R2=62.8%). These results strongly support the hypothesis that DDB1 is the gene encoding the hp-1 and hp-1w mutant phenotypes.Communicated by R. Hagemann  相似文献   
23.
Neuroleukin (NLK) is a multifunctional protein involved in neuronal growth and survival, cell motility and differentiation, and glucose metabolism. We report herein that hippocampal expression of NLK and its receptor gp78 is associated with maze learning in rats. First, mRNA levels of NLK and gp78 were significantly increased in hippocampi of male Fischer-344 rats following training in the Stone T-maze and the Morris water maze. Second, a parallel increase was found in hippocampal NLK and gp78 proteins after maze learning. Third, NLK and gp78 mRNA and protein expression in hippocampus was reduced in a group of aged rats that showed more errors during the acquisition of the Stone maze task as compared with young rats. Finally, application of recombinant NLK to hippocampal neurons significantly enhanced glutamate-induced ion currents, functional molecular changes that have been correlated with learning in vivo. Taken together, our results identify a novel association of hippocampal expression of NLK and its receptor gp78 with rat maze learning. Interaction of NLK with gp78 and subsequent signaling may strengthen synaptic mechanisms underlying learning and memory formation.  相似文献   
24.
The hyperthermophilic archaeon Methanococcus jannaschii uses several non-canonical enzymes to catalyze conserved reactions in glycolysis and gluconeogenesis. A highly diverged gene from that organism has been proposed to function as a phosphoglycerate mutase. Like the canonical cofactor-independent phosphoglycerate mutase and other members of the binuclear metalloenzyme superfamily, this M. jannaschii protein has conserved nucleophilic serine and metal-binding residues. Yet the substrate-binding residues are not conserved. We show that the genes at M. jannaschii loci MJ0010 and MJ1612 encode thermostable enzymes with phosphoglycerate mutase activity. Phylogenetic analyses suggest that this gene family arose before the divergence of the archaeal lineage.  相似文献   
25.
26.
Cellular remodeling during progression of dilation involves focal adhesion contact reorganization. However, the signaling mechanisms and structural consequences leading to impaired cardiomyocyte adhesion are poorly defined. These events were studied in tropomodulin-overexpressing transgenic mice that develop dilated cardiomyopathy associated with chronic elevation of intracellular calcium. Analysis of tropomodulin-overexpressing transgenic hearts by immunoblot and confocal microscopy revealed activation and redistribution of signaling molecules known to regulate adhesion. Calcium-dependent pyk2/related focal adhesion tyrosine kinase (RAFTK) showed changes in expression and phosphorylation state, similar to changes observed for a related downstream target molecule of pyk2/RAFTK termed focal adhesion kinase. Paxillin, the target substrate molecule for focal adhesion kinase phosphorylation, was redistributed in tropomodulin-overexpressing transgenic hearts with enhanced paxillin phosphorylation and cleavage. Certain aspects of the in vivo signaling phenotype including increased paxillin phosphorylation could be recapitulated in vitro using neonatal rat cardiomyocytes infected with recombinant adenovirus to overexpress tropomodulin. In addition, increasing intracellular calcium levels with ionomycin induced pyk2/RAFTK phosphorylation, and adenovirally mediated expression of wild-type pyk2/RAFTK resulted in increased phospho-pyk2/RAFTK levels and concomitant paxillin phosphorylation. Collectively, these results delineate a cardiomyocyte signaling pathway associated with dilation that has potential relevance for cardiac remodeling, focal adhesion reorganization, and loss of contractility.  相似文献   
27.
Microbeam radiation therapy is an experimental modality using parallel arrays of thin (<100 micro m) slices of synchrotron-generated X rays (microplanar beams, microbeams). We used EMT-6 murine mammary carcinoma subcutaneously inoculated in the hind legs of mice to compare the therapeutic efficacies of single-fraction, unidirectional (1) "co-planar" microbeams (an array of vertically oriented microplanar beams), (2) "cross-planar" microbeams (two arrays of parallel microbeams propagated in the same direction, one with vertically and the other with horizontally oriented microplanar beams), and (3) seamless (broad) beams from the same synchrotron source. The microbeams were 90 micro m wide and were spaced 300 micro m on center; the median energy in all beams was 100 or 118 keV. Tumor ablation rates were 4/8, 4/8 and 6/7 for a 410-, 520- and 650-Gy in-slice cross-planar microbeam dose, respectively, and 1/8, 3/8, 3/7 and 6/8 for a 23-, 30-, 38- and 45-Gy broad-beam dose, respectively. When the data were pooled from the three highest doses (same average tumor ablations of 50-60%), the incidences of normal-tissue acute toxicity (moist desquamation and epilation) and delayed toxicity (failure of hair regrowth) were significantly lower for cross-planar microbeams than broad beams (P < 0.025). Furthermore, for the highest doses in these two groups, which also had the same tumor ablation rate (>75%), not only were the above toxicities lower for the cross-planar microbeams than for the broad beams (P < 0.02), but severe leg dysfunction was also lower (P < 0.003). These findings suggest that single-fraction microbeams can ablate tumors at high rates with relatively little normal-tissue toxicity.  相似文献   
28.
29.
The beta-chemokine receptor CCR5 has been shown to modulate cell migration, proliferation, and immune functions and to serve as a co-receptor for the human immunodeficiency virus. We and others have shown that CCR5 activates related adhesion focal tyrosine kinase (RAFTK)/Pyk2/CAK-beta. In this study, we further characterize the signaling molecules activated by CCR5 upon binding to its cognate ligand, macrophage inflammatory protein-1beta (MIP1beta). We observed enhanced tyrosine phosphorylation of the phosphatases SHP1 and SHP2 upon MIP1beta stimulation of CCR5 L1.2 transfectants and T-cells derived from peripheral blood mononuclear cells. Furthermore, we observed that SHP1 associated with RAFTK. However, using a dominant-negative phosphatase-binding mutant of RAFTK (RAFTK(m906)), we found that RAFTK does not mediate SHP1 or SHP2 phosphorylation. SHP1 and SHP2 also associated with the adaptor protein Grb2 and the Src-related kinase Syk. Pretreatment of CCR5 L1.2 transfectants or T-cells with the phosphatase inhibitor orthovanadate markedly abolished MIP1beta-induced chemotaxis. Syk was also activated upon MIP1beta stimulation of CCR5 L1.2 transfectants or T-cells and associated with RAFTK. Overexpression of a dominant-negative Src-binding mutant of RAFTK (RAFTK(m402)) significantly attenuated Syk activation, whereas overexpression of wild-type RAFTK enhanced Syk activity, indicating that RAFTK acts upstream of CCR5-mediated Syk activation. Taken together, these results suggest that MIP1beta stimulation mediated by CCR5 induces the formation of a signaling complex consisting of RAFTK, Syk, SHP1, and Grb2.  相似文献   
30.
Kim TA  Ota S  Jiang S  Pasztor LM  White RA  Avraham S 《Gene》2000,255(1):105-116
The nuclear matrix and its role in cell physiology are largely unknown, and the discovery of any matrix constituent whose expression is tissue- and/or cell-specific offers a new avenue of exploration. Studies of the novel neuronal nuclear matrix protein, NRP/B, reveal that it is an early and highly specific marker of neuronal induction and development in vertebrates, since its expression is restricted mainly to the developing and mature nervous system. These studies also show that NRP/B is involved in neuronal differentiation. To further examine the structure-function of NRP/B, we have cloned and characterized the murine Nrp/b gene. The murine gene consists of four exons interrupted by three introns that span 7.6kb of DNA. The complete open reading frame is localized in exon 3, suggesting that NRP/B is highly conserved during evolution. Chromosomal analysis shows that NRP/B is localized to chromosome 13 in mouse and chromosome 5q12-13 in human.Since our previous studies demonstrated that NRP/B is expressed in primary hippocampal neurons but not in primary astrocytes, we have characterized NRP/B mRNA and protein expression in various brain cell lines and in human brain tumors. Abundant expression of NRP/B mRNA and protein was observed in human neuroblastoma cell lines (IMR32, SKN-MC, SKN-SH), in glioblastoma cell lines (A172, T98G, U87-MG, U118-MG, U138-MG, and U373-MG), in neuroglioma (H4) and astrocytoma cell lines (CCF-STTG1 and SW1088). Confocal analysis of NRP/B in U87-MG glioblastoma cells indicated nuclear localization of NRP/B. NRP/B expression was also observed in human primary brain tumors including glioblastoma multiformae and astrocytomas (total of five cases). These results suggest that NRP/B expression is upregulated in human brain tumors including glioblastomas and astrocytomas, while under normal conditions NRP/B expression is restricted to neurons. This study implicates a role for NRP/B in brain tumor development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号