首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   25篇
  294篇
  2022年   2篇
  2021年   6篇
  2018年   2篇
  2017年   2篇
  2016年   9篇
  2015年   9篇
  2014年   9篇
  2013年   11篇
  2012年   15篇
  2011年   23篇
  2010年   21篇
  2009年   8篇
  2008年   14篇
  2007年   14篇
  2006年   14篇
  2005年   11篇
  2004年   7篇
  2003年   9篇
  2002年   6篇
  2001年   6篇
  2000年   3篇
  1999年   10篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   6篇
  1990年   1篇
  1989年   6篇
  1988年   6篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   8篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1974年   3篇
  1973年   4篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1916年   1篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
71.
72.
Lin  Yang  Gross  Avner  Silver  Whendee L. 《Ecosystems》2022,25(2):387-403
Ecosystems - Humid tropical forests on highly weathered soils are often characterized by low bioavailable phosphorus (P) concentrations. These ecosystems also often experience low and fluctuating...  相似文献   
73.
Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%–70% of all worm proteins observed to have more than seven protein–protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested that long unstructured loops are a major part of unstructured regions in molecular networks.  相似文献   
74.
75.
Pablo Navarro  Philip Avner 《FEBS letters》2009,583(11):1721-1727
The integration of X-inactivation with development is a crucial aspect of this classical paradigm of epigenetic regulation. During early female mouse development, X-inactivation reprogramming occurs in pluripotent cells of the inner cell mass of the blastocyst and in pluripotent primordial germ cells. Here we discuss the developmental strategies which ensure the coupling of the regulation of X-inactivation to the acquisition of pluripotency through the regulation of the master of X-inactivation, the non-coding Xist gene, by the key factors which support pluripotency Nanog, Oct4 and Sox2.  相似文献   
76.
77.
In this paper, we introduce a model of malaria, a disease that involves a complex life cycle of parasites, requiring both human and mosquito hosts. The novelty of the model is the introduction of periodic coefficients into the system of one-dimensional equations, which account for the seasonal variations (wet and dry seasons) in the mosquito birth and death rates. We define a basic reproduction number R(0) that depends on the periodic coefficients and prove that if R(0)<1 then the disease becomes extinct, whereas if R(0)>1 then the disease is endemic and may even be periodic.  相似文献   
78.
This paper proposes a physical model involving the key structures within the neural cytoskeleton as major players in molecular-level processing of information required for learning and memory storage. In particular, actin filaments and microtubules are macromolecules having highly charged surfaces that enable them to conduct electric signals. The biophysical properties of these filaments relevant to the conduction of ionic current include a condensation of counterions on the filament surface and a nonlinear complex physical structure conducive to the generation of modulated waves. Cytoskeletal filaments are often directly connected with both ionotropic and metabotropic types of membrane-embedded receptors, thereby linking synaptic inputs to intracellular functions. Possible roles for cable-like, conductive filaments in neurons include intracellular information processing, regulating developmental plasticity, and mediating transport. The cytoskeletal proteins form a complex network capable of emergent information processing, and they stand to intervene between inputs to and outputs from neurons. In this manner, the cytoskeletal matrix is proposed to work with neuronal membrane and its intrinsic components (e.g., ion channels, scaffolding proteins, and adaptor proteins), especially at sites of synaptic contacts and spines. An information processing model based on cytoskeletal networks is proposed that may underlie certain types of learning and memory.  相似文献   
79.

Background  

The functions of proteins are strongly related to their localization in cell compartments (for example the cytoplasm or membranes) but the experimental determination of the sub-cellular localization of proteomes is laborious and expensive. A fast and low-cost alternative approach is in silico prediction, based on features of the protein primary sequences. However, biologists are confronted with a very large number of computational tools that use different methods that address various localization features with diverse specificities and sensitivities. As a result, exploiting these computer resources to predict protein localization accurately involves querying all tools and comparing every prediction output; this is a painstaking task. Therefore, we developed a comprehensive database, called CoBaltDB, that gathers all prediction outputs concerning complete prokaryotic proteomes.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号