首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   7篇
  181篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2018年   3篇
  2016年   3篇
  2015年   8篇
  2014年   7篇
  2013年   7篇
  2012年   11篇
  2011年   10篇
  2010年   5篇
  2009年   7篇
  2008年   14篇
  2007年   11篇
  2006年   10篇
  2005年   14篇
  2004年   15篇
  2003年   8篇
  2002年   8篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1968年   1篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
81.
Satellite cells are situated beneath the basal lamina that surrounds each myofiber and function as myogenic precursors for muscle growth and repair. The source of satellite cell renewal is controversial and has been suggested to be a separate circulating or interstitial stem cell population. Here, we transplant single intact myofibers into radiation-ablated muscles and demonstrate that satellite cells are self-sufficient as a source of regeneration. As few as seven satellite cells associated with one transplanted myofiber can generate over 100 new myofibers containing thousands of myonuclei. Moreover, the transplanted satellite cells vigorously self-renew, expanding in number and repopulating the host muscle with new satellite cells. Following experimental injury, these cells proliferate extensively and regenerate large compact clusters of myofibers. Thus, within a normally stable tissue, the satellite cell exhibits archetypal stem cell properties and is competent to form the basal origin of adult muscle regeneration.  相似文献   
82.
83.
84.
Summary The pathogenic yeast, Candida albicans, is insensitive to the anti-mitotic drug, benomyl, and to the dihydrofolate reductase inhibitor, methotrexate. Genes responsible for the intrinsic drug resistance were sought by transforming Saccharomyces cerevisiae, a yeast sensitive to both drugs, with genomic C. albicans libraries and screening on benomyl or methotrexate. Restriction analysis of plasmids isolated from benomyl- and methotrexate-resistant colonies indicated that both phenotypes were encoded by the same DNA fragment. Sequence analysis showed that the fragments were nearly identical and contained a long open reading frame of 1694 bp (ORF1) and a small ORF of 446 bp (ORF2) within ORF1 on the opposite strand. By site-directed mutagenesis, it was shown that ORF1 encoded both phenotypes. The protein had no sequence similarity to any known proteins, including -tubulin, dihydrofolate reductase, and the P-glycoprotein of the multi-drug resistance family. The resistance gene was detected in several C. albicans strains and in C. stellatoidea by DNA hybridization and by the polymerase chain reaction.  相似文献   
85.
The advantages of ultra-high magnetic field (7 Tesla) MRI for basic science research and neuroscience applications have proven invaluable. Structural and functional MR images of the human brain acquired at 7 T exhibit rich information content with potential utility for clinical applications. However, (1) substantial increases in susceptibility artifacts, and (2) geometrical distortions at 7 T would be detrimental for stereotactic surgeries such as deep brain stimulation (DBS), which typically use 1.5 T images for surgical planning. Here, we explore whether these issues can be addressed, making feasible the use of 7 T MRI to guide surgical planning. Twelve patients with Parkinson's disease, candidates for DBS, were scanned on a standard clinical 1.5 T MRI and a 7 T MRI scanner. Qualitative and quantitative assessments of global and regional distortion were evaluated based on anatomical landmarks and transformation matrix values. Our analyses show that distances between identical landmarks on 1.5 T vs. 7 T, in the mid-brain region, were less than one voxel, indicating a successful co-registration between the 1.5 T and 7 T images under these specific imaging parameter sets. On regional analysis, the central part of the brain showed minimal distortion, while inferior and frontal areas exhibited larger distortion due to proximity to air-filled cavities. We conclude that 7 T MR images of the central brain regions have comparable distortions to that observed on a 1.5 T MRI, and that clinical applications targeting structures such as the STN, are feasible with information-rich 7 T imaging.  相似文献   
86.
Mobilization of hematopoietic stem and progenitor cells (HSPCs) from the bone marrow to the peripheral blood is utilized in clinical HSPC transplantation protocols. Retention of HSPCs in the bone marrow is determined by relationships between the chemokine chemokine (C-X-C motif) ligand 12 (CXCL12) and its major receptor C-X-C chemokine receptor type 4 (CXCR4), and disruption of this retention by CXCR4 antagonists such as AMD3100 induces rapid HSPC mobilization. Here, we report that aminoglycoside-polyarginine conjugates (APACs) and N-α-acetyl-nona-D-arginine (r9) induce mobilization of white blood cells and, preferentially, immature hematopoietic progenitor cells (HPCs) in mice, similarly to AMD3100. Remarkably, administration of AMD3100 with each one of the APACs or r9 caused additional HPC mobilization. The mobilizing activity of APACs and r9 was accompanied by a significant elevation in plasma CXCL12 levels. To further understand how APACs, r9 and their combinations with AMD3100 compete with CXCL12 binding to CXCR4, as well with antibody against CXCR4 for CXCR4 binding, we have undertaken an approach combining experimental validation and docking to determine plausible binding modes for these ligands. On the basis of our biological and docking findings, and recently published NMR data, we suggest that combination of pairs of compounds such as APACs (or r9) with AMD3100 induces more efficient disruption of the CXCL12-CXCR4 interaction than AMD3100 alone, resulting in enhanced HPC mobilization.  相似文献   
87.
It is well-known that dead and dying neurons are quickly removed through phagocytosis by the brain's macrophages, the microglia. Therefore, neuronal loss during brain inflammation has always been assumed to be due to phagocytosis of neurons subsequent to their apoptotic or necrotic death. However, we report in this article that under inflammatory conditions in primary rat cultures of neurons and glia, phagocytosis actively induces neuronal death. Specifically, two inflammatory bacterial ligands, lipoteichoic acid or LPS (agonists of glial TLR2 and TLR4, respectively), stimulated microglial proliferation, phagocytic activity, and engulfment of ~30% of neurons within 3 d. Phagocytosis of neurons was dependent on the microglial release of soluble mediators (and peroxynitrite in particular), which induced neuronal exposure of the eat-me signal phosphatidylserine (PS). Surprisingly, however, eat-me signaling was reversible, so that blocking any step in a phagocytic pathway consisting of PS exposure, the PS-binding protein milk fat globule epidermal growth factor-8, and its microglial vitronectin receptor was sufficient to rescue up to 90% of neurons without reducing inflammation. Hence, our data indicate a novel form of inflammatory neurodegeneration, where inflammation can cause eat-me signal exposure by otherwise viable neurons, leading to their death through phagocytosis. Thus, blocking phagocytosis may prevent some forms of inflammatory neurodegeneration, and therefore might be beneficial during brain infection, trauma, ischemia, neurodegeneration, and aging.  相似文献   
88.
Apomorphine (Apo), a dopaminergic agonist used for treatment of Parkinson disease, is a potent antioxidant. In addition to its antioxidative effects, the dopaminergic and adrenergic effects of Apo were studied. Isolated perfused rat hearts were exposed to 25 min of no-flow global ischemia (37 degrees C) and 60 min of reperfusion (I/R, control). Drugs were introduced for the first 20 min of reperfusion. The LVDP of the control group recovered to 54.6 +/- 3.3%. Apo-treated hearts had significantly improved recovery (61.6 +/- 5%, p < 0.05). The recovery of the work index LVDP x HR was even bigger: 67.8 +/- 3.7% (Apo treatment) vs 41.7 +/- 4.6% (control, p < 0.001). Haloperidol, a dopaminergic antagonist, did not affect the recovery with Apo. Propranolol, a beta-adrenergic blocker, initially inhibited the effect of Apo. However, the recovery of the combined group (Apo + propranolol) increased and reached significance (LVDP, p < 0.05 vs control group) after cessation of propranolol perfusion. At 60 min of reperfusion this group was superior to Apo-treated hearts (LVDP, p < 0.05). Propranolol (without Apo) did not improve the hemodynamic recovery. The same pattern of recovery applies also to the recovery of the +dP/dt during the reperfusion. L-DOPA was less effective than Apo. I/R caused significant increase in carbonylation of proteins. Apomorphine inhibited the increase in carbonylation. Haloperidol did not affect this beneficial effect of Apo. L-DOPA significantly decreased the carbonylation of proteins. We conclude that the antioxidative effect of Apo is its main mechanism of cardioprotection.  相似文献   
89.
BANDINI, LINDA G. DUNG VU, AVIVA MUST, HELENE CYR, ALISON GOLDBERG, AND WILLIAM H. DIETZ. Comparison of high-calorie, low-nutrient-dense food consumption among obese and non-obese adolescents. ObesRes. Objective: The purpose of this study was to determine whether obese adolescents eat more high-calorie low-nutrient-dense foods than non-obese adolescents. Research Methods and Procedures: Using a cross-sectional design, 22 non-obese and 21 obese adolescents kept 14-day food records. Records provided estimates of total daily energy intake and caloric intake from five categories of high-calorie, low-nutrient-dense (HC) foods: candy, chips, soda, baked goods, and ice cream. Body composition was determined by 18O dilution and daily energy expenditure by doubly labeled water. Percentage of energy intake reported (%report) was calculated as the ratio of reported energy intake to measured energy expenditure (x 100%). Results: Both groups underreported energy intake, but the percentage reported was significantly greater in the non-obese group (78. ±20. 5% non-obese vs. 55. 5±21. 8% obese, p<0. 001). Consumption of calories from chips and soda was similar among non-obese and obese adolescents. However, total energy intake from all HC foods was higher in the non-obese group than among the obese (617±356 kcal/day vs. 362plusnum;223 kcallday; p<0. 01) and represented 27. 2±10. 5% and 19. 9±9. 6% of reported energy intake in the non-obese and obese groups, respectively. After adjustment for underreporting, the percentage of calories provided by each of the HC foods was similar in the obese and non-obese groups except for ice cream, which remained significantly greater in the non-obese group (p<0. 05). Discussion: Our findings suggest that both non-obese and obese adolescents consume a substantial portion of reported calories from HC foods and that obese adolescents do not consume more calories from these foods than non-obese adolescents. These data offer no evidence to support the widespread notion that obese adolescents eat more “junk food” than non-obese adolescents. Health professionals who treat obese adolescents must be aware that the excess calories in their diets may come from a variety of food sources and not solely from high-calorie snack foods.  相似文献   
90.

Introduction

Type 2 diabetes poses an increasing public health burden in South Africa (SA) with obesity as the main driver of the epidemic. Consumption of sugar sweetened beverages (SSBs) is linked to weight gain and reducing SSB consumption may significantly impact the prevalence of obesity and related diseases. We estimated the effect of a 20% SSB tax on the burden of diabetes in SA.

Methods and Findings

We constructed a life table-based model in Microsoft Excel (2010). Consumption data from the 2012 SA National Health and Nutrition Examination Survey, previously published own- and cross-price elasticities of SSBs and energy balance equations were used to estimate changes in daily energy intake and its projected impact on BMI arising from increased SSB prices. Diabetes relative risk and prevalent years lived with disability estimates from the Global Burden of Disease Study and modelled disease epidemiology estimates from a previous study were used to estimate the effect of the BMI changes on diabetes burden. Diabetes cost estimates were obtained from the South African Council for Medical Schemes. Over 20 years, a 20% SSB tax could reduce diabetes incident cases by 106 000 in women (95% uncertainty interval (UI) 70 000–142 000) and by 54 000 in men (95% UI: 33 000–80 000); and prevalence in all adults by 4.0% (95% UI: 2.7%-5.3%). Cumulatively over twenty years, approximately 21 000 (95% UI: 14 000–29 000) adult T2DM-related deaths, 374 000 DALYs attributed to T2DM (95% UI: 299 000–463 000) and over ZAR10 billion T2DM healthcare costs (95% UI: ZAR6.8–14.0 billion) equivalent to USD860 million (95% UI: USD570 million–USD1.2 billion) may be averted.

Conclusion

Fiscal policy on SSBs has the potential to mitigate the diabetes epidemic in South Africa and contribute to the National Department of Health goals stated in the National NCD strategic plan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号