首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   15篇
  国内免费   1篇
  2024年   1篇
  2023年   6篇
  2022年   9篇
  2021年   18篇
  2020年   12篇
  2019年   10篇
  2018年   19篇
  2017年   14篇
  2016年   11篇
  2015年   15篇
  2014年   37篇
  2013年   35篇
  2012年   33篇
  2011年   34篇
  2010年   21篇
  2009年   14篇
  2008年   21篇
  2007年   17篇
  2006年   18篇
  2005年   8篇
  2004年   12篇
  2003年   10篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1982年   1篇
  1980年   1篇
  1971年   1篇
排序方式: 共有392条查询结果,搜索用时 15 毫秒
331.
The production of 6-aminopenicillanic acid (6-APA) is a key step in the manufacture of semisynthetic antibiotics in the pharmaceutical industry. The penicillin G acylase from Escherichia coli has long been utilized for this purpose. However, the use of penicillin V acylases (PVA) presents some advantages including better stability and higher conversion rates. The industrial application of PVAs has so far been limited due to the nonavailability of suitable bacterial strains and cost issues. In this study, whole-cell immobilization of a recombinant PVA enzyme from Pectobacterium atrosepticum expressed in E. coli was performed. Membrane permeabilization with detergent was used to enhance the cell-bound PVA activity, and the cells were encapsulated in calcium alginate beads and cross-linked with glutaraldehyde. Optimization of parameters for the biotransformation by immobilized cells showed that full conversion of pen V to 6-APA could be achieved within 1?hr at pH 5.0 and 35°C, till 4% (w/v) concentration of the substrate. The beads could be stored for 28 days at 4°C with minimal loss in activity and were reusable up to 10?cycles with 1-hr hardening in CaCl2 between each cycle. The high enzyme productivity of the PVA enzyme system makes a promising case for its application for 6-APA production in the industry.  相似文献   
332.
Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.  相似文献   
333.
The area of lipid molecular design is attracting widespread interest among numerous research groups worldwide. Diverse lipid assemblies in aqueous media, such as vesicles, bilayers and nanorods, offer new applications in chemical biology. Lipids with specifically tailored molecular architecture have been successfully employed as gene delivery vehicles, for controlled drug release and the preparation of supramolecular gels. Such molecular design of lipids, as well as their characterization upon membrane formation, offers an insight into the possible molecular basis of their properties. This in turn helps in the design of further generations of lipid systems with more predictable characteristics. Here, we present an overview of the current trends in lipid design and their utilization in various biochemical, physical and chemical applications.  相似文献   
334.
335.
The Class III nucleotide cyclases are found in bacteria, eukaryotes and archaebacteria. Our survey of the bacterial and archaebacterial genome and plasmid sequences identified 193 Class III cyclase genes in only 29 species, of which we predict the majority to be adenylyl cyclases. Interestingly, several putative cyclase genes were found to have non-conserved substrate specifying residues. Ancestors of the eukaryotic C1-C2 domain containing soluble adenylyl cyclases as well as the protist guanylyl cyclases were found in bacteria. Diverse domains were fused to the cyclase domain and phylogenetic analysis indicated that most proteins within a single cluster have similar domain compositions, emphasising the ancient evolutionary origin and versatility of the cyclase domain.  相似文献   
336.
Vacuolar H(+)-ATPase functions as a vacuolar proton pump and is responsible for acidification of intracellular compartments such as the endoplasmic reticulum, Golgi, lysosomes, and endosomes. Previous reports have demonstrated that a 16-kDa subunit (16K) of vacuolar H(+)-ATPase via one of its transmembrane domains, TMD4, strongly associates with beta(1) integrin, affecting beta(1) integrin N-linked glycosylation and inhibiting its function as a matrix adhesion receptor. Because of this dramatic inhibition of beta(1) integrin-mediated HEK-293 cell motility by 16K expression, we investigated the mechanism by which 16 kDa was having this effect. Using HT1080 cells whose alpha(5)beta(1) integrin-mediated adhesion to fibronectin has been extensively studied, the expression of 16 kDa also resulted in reduced cell spreading on fibronectin-coated substrates. A pulse-chase study of beta(1) integrin biosynthesis indicated that 16K expression down-regulated the level of the 110-kDa biosynthetic form of beta(1) integrin (premature form) and, consequently, the level of the 130-kDa form of beta(1) integrin (mature form). Further experiments showed that the normal levels of association between the premature beta(1) integrin form and calnexin were significantly decreased by the expression of either 16 kDa or TMD4. Expression of 16 kDa also resulted in a Triton X-100-insoluble aggregation of an unusual 87-kDa form of beta(1) integrin. Interestingly, both Western blotting and a pulse-chase experiment showed co-immunoprecipitation of calnexin and 16K. These results indicate that 16K expression inhibits beta(1) integrin surface expression and spreading on matrix by a novel mechanism that results in reduced levels of functional beta(1) integrin.  相似文献   
337.
Homopolymeric nucleotide runs, also called mononucleotide microsatellites, are a ubiquitous, dominant, and mutagenic feature of eukaryotic genomes. A clear understanding of the forces that shape patterns of homopolymer evolution, however, is lacking. We provide a focused investigation of the abundance, chromosomal distribution, and mutation spectra of the four strand-specific homopolymer types (A, T, G, C) 8 bp in the genome of Caenorhabditis elegans. A and T homopolymers vastly outnumber G and C HPs, and the run-length distributions of A and T homopolymers differ significantly from G and C homopolymers. A scanning window analysis of homopolymer chromosomal distribution reveals distinct clusters of homopolymer density in autosome arms that are regions of high recombination in C. elegans. Dramatic biases are detected among closely spaced homopolymers; for instance, we observe 994 A homopolymers immediately followed by a T homopolymer (5 to 3) and only 8 instances of T homopolymers directly followed by an A homopolymer. Empirical homopolymer mutation assays in a set of C. elegans mutation-accumulation lines reveal an 20-fold higher mutation rate for G and C homopolymers compared to A and T homopolymers. Nuclear A and T homopolymers are also found to mutate 100-fold more slowly than mitochondrial A and T homopolymers. This integrative approach yields a total nuclear genome-wide homopolymer mutation rate estimate of 1.6 mutations per genome per generation.Novel sequences are deposited in GenBank under accession numbers AY219759–AY219789.  相似文献   
338.
339.
340.
The status of two mesophilic filamentous actinomycetes isolated from an arid Australian soil sample was determined using a polyphasic taxonomic approach. The isolates had chemical and morphological properties consistent with their classification in the genus Amycolatopsis, assignments that were supported by analysis of 16S rRNA gene sequence data. Isolate SF26T formed a distinct phyletic line and hence was sharply separated from its nearest phylogenetic neighbour, Amycolatopsis sacchari DSM 44468T. In contrast, isolate SF27T formed a subclade in the Amycolatopsis tree with Amycolatopsis vancoresmycina DSM 44592T but was separated readily from the latter by DNA:DNA pairing data. The two isolates were distinguished from one another and from their respective nearest phylogenetic neighbours using a range of phenotypic properties. These data indicate that the two isolates should be recognized as new species in the genus Amycolatopsis. The names proposed for these new taxa are Amycolatopsis bartoniae sp. nov. and Amycolatopsis bullii sp. nov. with isolates SF26T (=NCIMB 14706T = NRRL B-2846T) and SF27T (=NCIMB 14707T = NRRL B-24847T) as the respective type strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号