首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   465篇
  免费   28篇
  国内免费   1篇
  2024年   1篇
  2023年   5篇
  2022年   10篇
  2021年   22篇
  2020年   12篇
  2019年   10篇
  2018年   19篇
  2017年   16篇
  2016年   15篇
  2015年   18篇
  2014年   37篇
  2013年   40篇
  2012年   43篇
  2011年   41篇
  2010年   25篇
  2009年   19篇
  2008年   29篇
  2007年   18篇
  2006年   22篇
  2005年   10篇
  2004年   13篇
  2003年   12篇
  2002年   7篇
  2001年   2篇
  2000年   10篇
  1999年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1987年   2篇
  1985年   4篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有494条查询结果,搜索用时 46 毫秒
381.
Nitric-Oxide Synthase (NOS), that produces the biological signal molecule Nitric-Oxide (NO), exists in three different isoforms called, neuronal (nNOS), endothelial (eNOS) and inducible (iNOS). All NOS isoforms require post-translational interaction with the calcium-binding protein, calmodulin (CaM) for manifesting their catalytic activity. However, CaM has been suggested to control the translational assembly of the enzyme as well, particularly in helping its inducible isoform, iNOS assume a stable, heme-replete, dimeric and active form. Expression of recombinant murine iNOS in E.coli in the absence of CaM has been previously shown to give extremely poor yield of the enzyme which was claimed to be absolutely heme-free, devoid of flavins, completely monomeric and catalytically inactive when compared to the heme-replete, active, dimeric iNOS, generated through co-expression with CaM. In contrast, we found that although iNOS expressed without CaM does produce significantly low amounts of the CaM-free enzyme, the iNOS thus produced, is not completely devoid of heme and is neither entirely monomeric nor absolutely bereft of catalytic activity as reported before. In fact, iNOS synthesized in the absence of CaM undergoes compromised heme incorporation resulting in extremely poor dimerization and activity compared to its counterpart co-expressed with CaM. Moreover, such CaM-free iNOS has similar flavin content and reductase activity as iNOS co-expressed with CaM, suggesting that CaM may not be as much required for the functional assembly of the iNOS reductase domain as its oxygenase domain. LC-MS/MS-based peptide mapping of the CaM-free iNOS confirmed that it had the same full-length sequence as the CaM-replete iNOS. Isothermal calorimetric measurements also revealed high affinity for CaM binding in the CaM-free iNOS and thus the possible presence of a CaM-binding domain. Thus CaM is essential but not indispensible for the assembly of iNOS and such CaM-free iNOS may help in elucidating the role of CaM on iNOS catalysis.  相似文献   
382.
Mycobacterium tuberculosis survives inside the macrophages by employing several host immune evasion strategies. Here, we reported a novel mechanism in which M. tuberculosis acetyltransferase, encoded by Rv3034c, induces peroxisome homeostasis to regulate host oxidative stress levels to facilitate intracellular mycobacterial infection. Presence of M. tuberculosis Rv3034c induces the expression of peroxisome biogenesis and proliferation factors such as Pex3, Pex5, Pex19, Pex11b, Fis‐1 and DLP‐1; while depletion of Rv3034c decreased the expression of these molecules, thereby selective degradation of peroxisomes via pexophagy. Further studies revealed that M. tuberculosis Rv3034c inhibit induction of pexophagy mechanism by down‐regulating the expression of pexophagy associated proteins (p‐AMPKα, p‐ULK‐1, Atg5, Atg7, Beclin‐1, LC3‐II, TFEB and Keap‐1) and adaptor molecules (NBR1 and p62). Inhibition was found to be dependent on the phosphorylation of mTORC1 and activation of peroxisome proliferator activated receptor‐γ. In order to maintain intracellular homeostasis during oxidative stress, M. tuberculosis Rv3034c was found to induce degradation of dysfunctional and damaged peroxisomes through activation of Pex14 in infected macrophages. In conclusion, this is the first report which demonstrated that M. tuberculosis acetyltransferase regulate peroxisome homeostasis in response to intracellular redox levels to favour mycobacterial infection in macrophage.  相似文献   
383.
The population of India harbors one of the world's most highly diverse gene pools, owing to the influx of successive waves of immigrants over regular periods in time. Several phylogenetic studies involving mitochondrial DNA and Y chromosomal variation have demonstrated Europeans to have been the first settlers in India. Nevertheless, certain controversy exists, due to the support given to the thesis that colonization was by the Austro-Asiatic group, prior to the Europeans. Thus, the aim was to investigate pre-historic colonization of India by anatomically modern humans, using conserved stretches of five amino acid (EPIYA) sequences in the cagA gene of Helicobacter pylori. Simultaneously, the existence of a pathogenic relationship of tyrosine phosphorylation motifs (TPMs), in 32 H. pylori strains isolated from subjects with several forms of gastric diseases, was also explored. High resolution sequence analysis of the above described genes was performed. The nucleotide sequences obtained were translated into amino acids using MEGA (version 4.0) software for EPIYA. An MJ-Network was constructed for obtaining TPM haplotypes by using NETWORK (version 4.5) software. The findings of the study suggest that Indian H. pylori strains share a common ancestry with Europeans. No specific association of haplotypes with the outcome of disease was revealed through additional network analysis of TPMs.  相似文献   
384.
Obesity and age are risk factors for feline diabetes. This study aimed to test the hypothesis that age, long-term obesity, and dietary composition would lead to peripheral and hepatorenal insulin resistance, indicated by higher endogenous glucose production (EGP) in the fasted and postprandial state, higher blood glucose and insulin, and higher leptin, free thyroxine, and lower adiponectin concentrations. Using triple tracer-(2)H(2)O, [U-(13)C(3)] propionate, and [3,4-(13)C(2)] glucose infusion, and indirect calorimetry-we investigated carbohydrate and fat metabolic pathways in overnight-fasted neutered cats (13 young lean, 12 old lean, and 12 old obese), each fed three different diets (high protein with and without polyunsaturated fatty acids, and high carbohydrate) in a crossover design. EGP was lowest in fasted and postprandial obese cats despite peripheral insulin resistance, indicated by hyperinsulinemia. Gluconeogenesis was the most important pathway for EGP in all groups, but glycogen contributed significantly. Insulin and leptin concentrations were higher in old than in young lean cats; adiponectin was lowest in obese cats but surprisingly highest in lean old cats. Diet had little effect on metabolic parameters. We conclude that hepatorenal insulin resistance does not develop in the fasted or postprandial state, even in long-term obese cats, allowing the maintenance of euglycemia through lowering EGP. Glycogen plays a major role in EGP, especially in lean fasted cats, and in the postprandial state. Aging may predispose to insulin resistance, which is a risk factor for diabetes in cats. Mechanisms underlying the high adiponectin of healthy old lean cats need to be further explored.  相似文献   
385.
Investigations of the catalytic and structural transitions of jack bean α-mannosidase (Jbα-man) are described in the present paper. The enzyme was maximally stable at pH 5.0; however, when incubated in the pH range of 11.0-12.0, showed 1.3 times higher activity and also stability for longer time. The free amino group at or near the active site was probably involved in the stability and activation mechanism. The active site is constituted by the association of two unidentical subunits connected by disulfide linkages. The metalloenzyme has Zn2+ ions tightly bound and chelation reduces the thermal stability of the protein. Energetics of catalysis and thermodynamics of inhibition of the enzyme were also carried out.  相似文献   
386.
A biocatalatic pathway involving chromogenic probe has been proposed for the determination of catalase activity by means of iso-nicotinicacidhydrazide (INH) and pyrocatechol (PC). The assay is based on the enzymatic consumption of hydrogen peroxide using INH-PC system. The response of the catalase activity was ascertained by the rate of the reaction involving 14.10 mM H2O2. On addition of H2O2, INH-PC indicator system formed a chromogenic product with absorbance maxima at 490 nm. Hence the activity of catalase was directly measured by the chromogenic response in the formation of the coupled product. The catalase assay was elaborated by the kinetic response of the INH-PC system. The linearity of the catalase activity and H2O2 was in the range 0.2-7.0 units and 1.76-7.0 mM, respectively in 3 ml solution. The catalytic efficiency and catalytic power were calculated. The Michaelis-Menten constant of INH, PC and H2O2 were found to be 0.344, 0.176 and 8.82 mM, respectively. The indicator reaction was applied in the determination of catalase activity in mycelia mats and culture media.  相似文献   
387.
388.
Chaturvedi AK  Mishra A  Tiwari V  Jha B 《Gene》2012,498(2):280-287
Aeromonas hydrophila is both a human and animal pathogen, and the cytotoxic enterotoxin (Act) is a crucial virulence factor of this bacterium because of its associated hemolytic, cytotoxic, and enterotoxic activities. Previously, to define the role of some regulatory genes in modulating Act production, we showed that deletion of a glucose-inhibited division gene (gidA) encoding tRNA methylase reduced Act levels, while overproduction of DNA adenine methyltransferase (Dam) led to a concomitant increase in Act-associated biological activities of a diarrheal isolate SSU of A. hydrophila. Importantly, there are multiple GATC binding sites for Dam within an upstream sequence of the gidA gene and one such target site in the act gene upstream region. We showed the dam gene to be essential for the viability of A. hydrophila SSU, and, therefore, to better understand the interaction of the encoding genes, Dam and GidA, in act gene regulation, we constructed a gidA in-frame deletion mutant of Escherichia coli GM28 (dam+) and GM33 (?dam) strains. We then tested the expressional activity of the act and gidA genes by using a promoterless pGlow-TOPO vector containing a reporter green fluorescent protein (GFP). Our data indicated that in GidA+ strains of E. coli, constitutive methylation of the GATC site(s) by Dam negatively regulated act and gidA gene expression as measured by GFP production. However, in the ?gidA strains, irrespective of the presence or absence of constitutively active Dam, we did not observe any alteration in the expression of the act gene signifying the role of GidA in positively regulating Act production. To determine the exact mechanism of how Dam and GidA influence Act, a real-time quantitative PCR (RT-qPCR) assay was performed. The analysis indicated an increase in gidA and act gene expression in the A. hydrophila Dam-overproducing strain, and these data matched with Act production in the E. coli GM28 strain. Thus, the extent of DNA methylation caused by constitutive versus overproduction of Dam, as well as possible conformation of DNA influence the expression of act and gidA genes in A. hydrophila SSU. Our results indicate that the act gene is under the control of both Dam and GidA modification methylases, and Dam regulates Act production via GidA.  相似文献   
389.
The human cysteine dioxygenase 1 (CDO1) gene is a non-heme structured, iron-containing metalloenzyme involved in the conversion of cysteine to cysteine sulfinate, and plays a key role in taurine biosynthesis. In our search for novel methylated gene promoters, we have analyzed differential RNA expression profiles of colorectal cancer (CRC) cell lines with or without treatment of 5-aza-2′-deoxycytidine. Among the genes identified, the CDO1 promoter was found to be differentially methylated in primary CRC tissues with high frequency compared to normal colon tissues. In addition, a statistically significant difference in the frequency of CDO1 promoter methylation was observed between primary normal and tumor tissues derived from breast, esophagus, lung, bladder and stomach. Downregulation of CDO1 mRNA and protein levels were observed in cancer cell lines and tumors derived from these tissue types. Expression of CDO1 was tightly controlled by promoter methylation, suggesting that promoter methylation and silencing of CDO1 may be a common event in human carcinogenesis. Moreover, forced expression of full-length CDO1 in human cancer cells markedly decreased the tumor cell growth in an in vitro cell culture and/or an in vivo mouse model, whereas knockdown of CDO1 increased cell growth in culture. Our data implicate CDO1 as a novel tumor suppressor gene and a potentially valuable molecular marker for human cancer.  相似文献   
390.
C-reactive protein (CRP) is a cyclic pentameric protein whose major binding specificity, at physiological pH, is for substances bearing exposed phosphocholine moieties. Another pentameric form of CRP, which exists at acidic pH, displays binding activity for oxidized LDL (ox-LDL). The ox-LDL-binding site in CRP, which is hidden at physiological pH, is exposed by acidic pH-induced structural changes in pentameric CRP. The aim of this study was to expose the hidden ox-LDL-binding site of CRP by site-directed mutagenesis and to generate a CRP mutant that can bind to ox-LDL without the requirement of acidic pH. Mutation of Glu(42), an amino acid that participates in intersubunit interactions in the CRP pentamer and is buried, to Gln resulted in a CRP mutant (E42Q) that showed significant binding activity for ox-LDL at physiological pH. For maximal binding to ox-LDL, E42Q CRP required a pH much less acidic than that required by wild-type CRP. At any given pH, E42Q CRP was more efficient than wild-type CRP in binding to ox-LDL. Like wild-type CRP, E42Q CRP remained pentameric at acidic pH. Also, E42Q CRP was more efficient than wild-type CRP in binding to several other deposited, conformationally altered proteins. The E42Q CRP mutant provides a tool to investigate the functions of CRP in defined animal models of inflammatory diseases including atherosclerosis because wild-type CRP requires acidic pH to bind to deposited, conformationally altered proteins, including ox-LDL, and available animal models may not have sufficient acidosis or other possible modifiers of the pentameric structure of CRP at the sites of inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号