首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   15篇
  国内免费   1篇
  383篇
  2024年   1篇
  2023年   5篇
  2022年   11篇
  2021年   18篇
  2020年   12篇
  2019年   10篇
  2018年   19篇
  2017年   13篇
  2016年   11篇
  2015年   15篇
  2014年   35篇
  2013年   35篇
  2012年   34篇
  2011年   34篇
  2010年   21篇
  2009年   14篇
  2008年   20篇
  2007年   17篇
  2006年   18篇
  2005年   7篇
  2004年   10篇
  2003年   9篇
  2002年   3篇
  2000年   3篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1982年   1篇
  1980年   1篇
  1971年   1篇
排序方式: 共有383条查询结果,搜索用时 15 毫秒
131.
Current analytical strategies for collecting proteomic data using data-dependent acquisition (DDA) are limited by the low analytical reproducibility of the method. Proteomic discovery efforts that exploit the benefits of DDA, such as providing peptide sequence information, but that enable improved analytical reproducibility, represent an ideal scenario for maximizing measureable peptide identifications in “shotgun”-type proteomic studies. Therefore, we propose an analytical workflow combining DDA with retention time aligned extracted ion chromatogram (XIC) areas obtained from high mass accuracy MS1 data acquired in parallel. We applied this workflow to the analyses of sample matrixes prepared from mouse blood plasma and brain tissues and observed increases in peptide detection of up to 30.5% due to the comparison of peptide MS1 XIC areas following retention time alignment of co-identified peptides. Furthermore, we show that the approach is quantitative using peptide standards diluted into a complex matrix. These data revealed that peptide MS1 XIC areas provide linear response of over three orders of magnitude down to low femtomole (fmol) levels. These findings argue that augmenting “shotgun” proteomic workflows with retention time alignment of peptide identifications and comparative analyses of corresponding peptide MS1 XIC areas improve the analytical performance of global proteomic discovery methods using DDA.Label-free methods in mass spectrometry-based proteomics, such as those used in common “shotgun” proteomic studies, provide peptide sequence information as well as relative measurements of peptide abundance (13). A common data acquisition strategy is based on data-dependent acquisition (DDA)1 where the most abundant precursor ions are selected for tandem mass spectrometry (MS/MS) analysis (12). DDA attempts to minimize redundant peptide precursor selection and maximize the depth of proteome coverage (2). However, the analytical reproducibility of peptide identifications obtained using DDA-based methods result in <75% overlap between technical replicates (34). Comparisons of peptide identifications between replicate analyses have shown that the rate of new peptide identifications increases sharply following two replicate sample injections and gradually tapers off after approximately five replicate injections (4). This phenomenon is due, in part, to the semirandom sampling of peptides in a DDA experiment (5).Alternate label-free methods focused on measuring the abundance of intact peptide ions, such as the accurate mass and time tag (AMT) approach (68, 42), are aimed at differential analyses of extracted ion chromatogram (XIC) areas integrated from high mass accuracy peptide precursor mass spectra (MS1 spectra) exhibiting discrete chromatographic elution times. This method is particularly powerful for the analysis of post-translationally modified (PTM) peptides as pairing the low abundance of PTM candidates with the variable nature of DDA complicates comparisons between samples (9, 43). However, label-free strategies focused on the analysis of peptide MS1 XIC areas are dependent on a priori knowledge of peptide ions and retention times (210). Thus, prospective analyses of samples are needed to assess peptides and their respective retention times. This prospective analysis may not be possible for reagent-limited samples. Further, the usage of previously established peptide features in the analysis of different sample types can be confounded by unknown matrix effects that can produce variable retention time characteristics and peptide ion suppression (2). Therefore, proteomic strategies that make use of DDA, to provide peptide sequence information and identify features within the sample, but that also use MS1 data for comparisons between samples, represent an ideal combination for maximizing measureable peptide identification events in “shotgun” proteomic discovery analyses.Here we describe an analytical workflow that combines traditional DDA methods with the analysis of retention time aligned XIC areas extracted from high mass accuracy peptide precursor MS1 spectra. This method resulted in a 25.1% (±6.6%) increase in measureable peptide identification events across samples of diverse composition because of the inferential extraction of peptide MS1 XIC areas in sample sets lacking corresponding MS/MS events. These findings were observed in measurements of peptide MS1 XIC abundances using sample types ranging from tryptic digests of olfactory bulb tissues dissected from Homer2 knockout and wild-type mice to mouse blood plasma exhibiting differential levels of hemolysis. We further establish that this method is quantitative using a dilution series of known bovine standard peptide concentrations spiked into mouse blood plasma. These data show that comparative analysis between samples should be performed using peptide MS1 data as opposed to semirandomly sampled peptide MS/MS data. This approach maximizes the number of peptides that can be compared between samples.  相似文献   
132.
Annexin A7 (synexin, annexin VII) is postulated to promote membrane fusion during surfactant secretion in alveolar type II cells and catecholamine secretion in adrenal chromaffin cells. Recently, we demonstrated that the 1-29 residues in the NH(2)-terminus could, possibly by interaction with the COOH-terminus, influence the Ca(2+)-dependent membrane binding, aggregation, and fusion properties of annexin A7 (A7). In this study, we further investigated this 29-residue domain by evaluating several deletion and point mutations for membrane-associated functions of A7. In comparison to A7, the mutants lacking 1-29 residues (A7Delta(1-29)) or 1-21 residues (A7Delta(1-21)), but not those lacking 1-10 residues (A7Delta(1-10)) or 21-29 residues (A7Delta(21-29)), showed diminished membrane binding. Segmental deletion of 10-20 residues (A7Delta(10-20)) also decreased the protein binding to membranes. The Ca(2+)-dependent membrane aggregation of PLV with A7Delta(1-29) was maximally diminished but less so with A7Delta(10-20) or A7Delta(1-21) in comparison to that with A7. However, phospholipid vesicle (PVL) aggregation was unaffected with A7Delta(1-10) or A7Delta(21-29). The Ca(2+)-dependent membrane fusion of PLV was also diminished with A7Delta(10-20) and A7Delta(1-29), but not with A7Delta(1-10). Since the mode of annexin A7 association and function with biological membranes could be different, we also evaluated these proteins for functional changes with isolated lung lamellar bodies. In comparison to A7, the binding to lamellar bodies was diminished for A7Delta(1-29) and A7Delta(1-21) but not for A7Delta(1-10). The Ca(2+)-dependent fusion of isolated lamellar bodies with PLV was also diminished with A7Delta(1-29), but not with A7Delta(10-20) or A7Delta(1-21). Taken together, our studies suggest that the 10-residue domain (Y(11)-A(20)) in the NH(2)-terminus modifies the phospholipid binding and aggregation properties of annexin A7. For binding and fusion of biological membranes, the 10-29-residue domain may be required although the annexin A7 properties are primarily modulated through the Y(11)-A(20) domain.  相似文献   
133.
134.
Abstract

Tumour hypoxia results in dramatic changes in the gene expression, proliferation and survival of tumour cells. The tumour cells shift towards anaerobic glycolysis which results in change of pH in their microenvironment. In response to this stress, over expression of carbonic anhydrase IX (CA IX) genes is observed in many solid tumours. So, selective inhibition of CA IX can be a promising target for anti-cancer drugs. In this work in silico tools like atom-based 3D-QSAR modelling, pharmacophore-based virtual screening and molecular docking were used to identify potential CA IX inhibitors. Based on the training set used in the QSAR model, twenty pharmacophore models were generated. Out of these, HHHR_1, AHHR_1, DHHHR_1, AHHHR_1 model was used to screen a database of 1,50,000 compounds retrieved from ZINC 15 database. R2 and Q2 was 0.9864 and 0.8799, respectively, for the developed QSAR model. 163 compounds showed a phase screen score above 2.4 in which ZINC02260669 was the highest ranked (screen score, 2.852058) compound in all the four models. Built QSAR model was used to predict the activity of all these 163 compounds and ZINC72370966 showed the highest predicted activity with pKi value of 7.649. These compounds were docked against CA IX (human) protein (PDB ID 5FL6) and molecular docking results showed favourable binding interactions for the best ten identified hits. This work gives design insights and some potential scaffolds which can be developed as CA IX inhibitors.

Communicated by Ramaswamy H. Sarma  相似文献   
135.
Nanotechnology is an emerging branch of science, which has potential to solve many problems in different fields. The union of nanotechnology with other fields of sciences including physics, chemistry, and biology has brought the concept of synthesis of nanoparticles from their respective metals. Till date, many types of nanoparticles have been synthesized and being used in different fields for various applications. Moreover, copper nanoparticles attract biologists because of their significant and broad-spectrum bioactivity. Due to the large surface area to volume ratio, copper nanoparticles have been used as potential antimicrobial agent in many biomedical applications. But the excess use of any metal nanoparticles increase the chance of toxicity to humans, other living beings, and environment. In this article, we have critically reviewed the bioactivities and cytotoxicity of copper nanoparticles. We have also focused on possible mechanism involved in its interaction with microbes.  相似文献   
136.
Reactive oxygen or nitrogen species are generated in the plant cell during the extreme stress condition, which produces toxic compounds after reacting with the organic molecules. The glutathione-S-transferase (GST) enzymes play a significant role to detoxify these toxins and help in excretion or sequestration of them. In the present study, we have cloned 1023 bp long promoter region of tau class GST from an extreme halophyte Salicornia brachiata and functionally characterized using the transgenic approach in tobacco. Computational analysis revealed the presence of abiotic stress responsive cis-elements like ABRE, MYB, MYC, GATA, GT1 etc., phytohormones, pathogen and wound responsive motifs. Three 5’-deletion constructs of 730 (GP2), 509 (GP3) and 348 bp (GP4) were made from 1023 (GP1) promoter fragment and used for tobacco transformation. The single event transgenic plants showed notable GUS reporter protein expression in the leaf tissues of control as well as treated plants. The expression level of the GUS gradually decreases from GP1 to GP4 in leaf tissues, whereas the highest level of expression was detected with the GP2 construct in root and stem under control condition. The GUS expression was found higher in leaves and stems of salinity or osmotic stress treated transgenic plants than that of the control plants, but, lower in roots. An efficient expression level of GUS in transgenic plants suggests that this promoter can be used for both constitutive as well as stress inducible expression of gene(s). And this property, make it as a potential candidate to be used as an alternative promoter for crop genetic engineering.  相似文献   
137.
Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2 ; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed) condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.  相似文献   
138.
139.
The antimicrobial activity of the N-[5-(2-furanyl)-2-methyl-4-oxo-4H-theino[2,3-d]pyrimidin-3-y1]-carboxamides and 3-substituted-5-(2-furanyl)-2-methyl-3H-thieno[2,3-d]pyrimidin-4-ones was correlated with different topological indices using Hansch analysis. Good correlations were obtained through a simple regression equation with third order molecular connectivity index (3chi). The developed QSAR models were crossvalidated by leave-one-out technique.  相似文献   
140.
Ultrasound is an attractive modality for imaging muscle and tendon motion during dynamic tasks and can provide a complementary methodological approach for biomechanical studies in a clinical or laboratory setting. Towards this goal, methods for quantification of muscle kinematics from ultrasound imagery are being developed based on image processing. The temporal resolution of these methods is typically not sufficient for highly dynamic tasks, such as drop-landing. We propose a new approach that utilizes a Doppler method for quantifying muscle kinematics. We have developed a novel vector tissue Doppler imaging (vTDI) technique that can be used to measure musculoskeletal contraction velocity, strain and strain rate with sub-millisecond temporal resolution during dynamic activities using ultrasound. The goal of this preliminary study was to investigate the repeatability and potential applicability of the vTDI technique in measuring musculoskeletal velocities during a drop-landing task, in healthy subjects. The vTDI measurements can be performed concurrently with other biomechanical techniques, such as 3D motion capture for joint kinematics and kinetics, electromyography for timing of muscle activation and force plates for ground reaction force. Integration of these complementary techniques could lead to a better understanding of dynamic muscle function and dysfunction underlying the pathogenesis and pathophysiology of musculoskeletal disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号