首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   30篇
  2022年   1篇
  2021年   3篇
  2019年   8篇
  2018年   3篇
  2017年   5篇
  2016年   10篇
  2015年   10篇
  2014年   12篇
  2013年   7篇
  2012年   17篇
  2011年   16篇
  2010年   15篇
  2009年   9篇
  2008年   8篇
  2007年   5篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   8篇
  2002年   11篇
  2001年   8篇
  2000年   4篇
  1999年   7篇
  1998年   1篇
  1995年   6篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1985年   1篇
  1983年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有210条查询结果,搜索用时 234 毫秒
201.
T and B cells continually recirculate between blood and secondary lymphoid organs. To promote their trans‐endothelial migration (TEM), chemokine receptors control the activity of RHO family small GTPases in part via GTPase‐activating proteins (GAPs). T and B cells express several RHO‐GAPs, the function of most of which remains unknown. The ARHGAP45 GAP is predominantly expressed in hematopoietic cells. To define its in vivo function, we describe two mouse models where ARHGAP45 is ablated systemically or selectively in T cells. We combine their analysis with affinity purification coupled to mass spectrometry to determine the ARHGAP45 interactome in T cells and with time‐lapse and reflection interference contrast microscopy to assess the role of ARGHAP45 in T‐cell polarization and motility. We demonstrate that ARHGAP45 regulates naïve T‐cell deformability and motility. Under physiological conditions, ARHGAP45 controls the entry of naïve T and B cells into lymph nodes whereas under competitive repopulation it further regulates hematopoietic progenitor cell engraftment in the bone marrow, and T‐cell progenitor thymus seeding. Therefore, the ARGHAP45 GAP controls multiple key steps in the life of T and B cells.  相似文献   
202.
Two groups of migrating wild Atlantic salmon (Salmo salar) smolts caught within a 1 week interval in the River Alta, northern Norway, were tagged with acoustic transmitters and measured for gill Na+, K+ -ATPase activity in order to compare their smolt status with timing of sea entry. The first group of smolts had low levels of gill Na+, K+ -ATPase activity and resided in the lower part of the river twice as long as the second group that had high levels of gill Na+, K+ -ATPase activity. This indicates that early migrating smolts may not be completely physiologically adapted for salt water and delay their sea entry, thereby also synchronizing their seaward migration with the later migrating smolts.  相似文献   
203.
204.
205.
206.
Dystrophin-deficient skeletal muscles of mdx mice undergo their first rounds of degeneration-regeneration at the age of 14-28 days. This feature is thought to result from an increase in motor activity at weaning. In this study, we hypothesize that if the muscle is prevented from contracting, it will avoid the degenerative changes that normally occur. For this purpose, we developed a procedure of mechanical hindlimb immobilization in 3-wk-old mice to restrain soleus (Sol) and extensor digitorum longus (EDL) muscles in the stretched or shortened position. After a 14-day period of immobilization, the striking feature was the low percentage of regenerated (centronucleated) myofibers in Sol and EDL muscles, regardless of the length at which they were fixed, compared with those on the contralateral side (stretched Sol: 8.4 +/- 6.5 vs. 46.6 +/- 10.3%, P = 0.0008; shortened Sol: 1.2 +/- 1.6 vs. 50.4 +/- 16.4%, P = 0.0008; stretched EDL: 05 +/- 0.5 vs. 32.9 +/- 17.5%, P = 0. 002; shortened EDL: 3.3 +/- 3.1 vs. 34.7 +/- 11.1%, P = 0.002). Total numbers of myofibers did not change with immobilization. This study shows that limb immobilization prevents the occurrence of the first round of myofiber necrosis in mdx mice and suggests that muscle contractions play a role in the skeletal muscle degeneration of dystrophin-deficient mdx mouse muscles.  相似文献   
207.
208.
209.
In stream ecosystems, the growth of aquatic primary producers is affected by spatial and temporal variations in the riparian canopy, which can influence the availability of light resources. Aquatic plants can acclimate to low light environments by employing a suite of morphological or physiological mechanisms to increase light capture or photosynthetic efficiency. Some species may also use alternate types of propagules to colonize environments with heterogeneous light environments. In a greenhouse experiment we examined the morphological and physiological response of watercress (Nasturtium officinale R. Br.) to a gradient of increasing light levels, which ranged from 7% ambient light to full sunlight. We also determined if watercress seedlings and vegetative fragments differed in their growth response to increasing light levels. Total biomass and root biomass of seedlings and vegetative fragments decreased with decreasing light levels. The difference in plant biomass across treatments was due to morphological changes in total canopy area and leaf area, both of which increased with decreasing light levels. Seedlings and vegetative fragments did not differ in their response to light availability, but vegetative fragments had higher final biomass as a result of higher initial biomass. Physiological acclimation to low light levels appears to be of secondary importance for watercress as the concentrations of total chlorophyll, chlorophyll a, chlorophyll b, and chlorophyll a:b did not differ among light levels or between seedlings and vegetative fragments. Seedlings and vegetative fragments grown under high light levels had a greater percentage of carbon and a lower percentage of nitrogen than plants grown under low light conditions. The results of this study indicate that watercress displays considerable morphological plasticity and acclimates to low light conditions primarily by increasing leaf area and canopy surface area. There is no evidence that the type of watercress propagule (seedling vs. vegetative fragment) imparts any growth advantage in low light environments and watercress grown from either type of propagule showed no differences in their morphological or physiological responses to varying light regimes. Handling editor: S. M. Thomaz  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号