首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   860篇
  免费   71篇
  国内免费   1篇
  932篇
  2022年   9篇
  2021年   19篇
  2020年   6篇
  2018年   17篇
  2017年   12篇
  2016年   17篇
  2015年   21篇
  2014年   22篇
  2013年   30篇
  2012年   36篇
  2011年   43篇
  2010年   42篇
  2009年   26篇
  2008年   47篇
  2007年   36篇
  2006年   25篇
  2005年   27篇
  2004年   34篇
  2003年   34篇
  2002年   19篇
  2001年   13篇
  2000年   17篇
  1999年   8篇
  1998年   11篇
  1997年   9篇
  1996年   11篇
  1995年   13篇
  1993年   6篇
  1992年   12篇
  1990年   10篇
  1989年   8篇
  1987年   10篇
  1985年   8篇
  1984年   13篇
  1983年   10篇
  1982年   11篇
  1980年   10篇
  1979年   6篇
  1978年   10篇
  1975年   7篇
  1974年   9篇
  1972年   10篇
  1971年   6篇
  1969年   7篇
  1959年   6篇
  1957年   6篇
  1951年   5篇
  1945年   8篇
  1939年   7篇
  1937年   5篇
排序方式: 共有932条查询结果,搜索用时 15 毫秒
91.
92.
Tranquillizers.     
F. E. McNair 《CMAJ》1965,93(15):805-806
  相似文献   
93.
94.
95.
96.
97.
98.
Summary The continued release of caesium radioisotopes into the environment has led to a resurgence of interest in microbe-Cs interactions. Caesium exists almost exclusively as the monovalent cation Cs+ in the natural environment. Although Cs+ is a weak Lewis acid that exhibits a low tendency to form complexes with ligands, its chemical similarity to the biologically essential alkali cation K+ facilitates high levels of metabolism-dependent intracellular accumulation. Microbial Cs+ (K+) uptake is generally mediated by monovalent cation transport systems located on the plasma membrane. These differe widely in specificity for alkali cations and consequently microorganisms display large differences in their ability to accumulate Cs+; Cs+ appears to have an equal or greater affinity than K+ for transport in certain microorganisms. Microbial Cs+ accumulation is markedly influenced by the presence of external cations, e.g. K+, Na+, NH4 + and H+, and is generally accompanied by an approximate stoichiometric exchange for intracellular K+. However, stimulation of growth of K+-starved microbial cultures by Cs+ is limited and its has been proposed that it is not the presence of Cs+ in cells that is growth inhibitory but rather the resulting loss of K+. Increased microbial tolerance to Cs+ may result from sequestration of Cs+ in vacuoles or changes in the activity and/or specificity of transport systems mediating Cs+ uptake. The precise intracellular target(s) for Cs+-induced toxicity has yet to be clearly defined, although certain internal structures, e.g. ribosomes, become unstable in the presence of Cs+ and Cs+ is known to substitute poorly for K+ in the activation of many K+-requiring enzymes.  相似文献   
99.
The Local Exchange Model (LEM) is a stochastic diffusion model of particle transport in turbulent flowing water. It was developed mainly for application to particles of near-neutral buoyancy that are strongly influenced by turbulent eddies. Turbulence can rapidly transfer such particles to the bed, where settlement can then occur by, for example, sticking to biofilms (e.g., fine particulate organic matter, or FPOM) or attaching to the substrate behaviorally (e.g., benthic invertebrates). Previous papers on the LEM have addressed the problems of how long (time) and far (distance) a suspended particle will be transported before hitting the bed for the first time. These are the hitting-time and hitting-distance problems, respectively. Hitting distances predicted by the LEM for FPOM in natural streams tend to be much shorter than the distances at which most particles actually settle, suggesting that particles usually do not settle the first time they hit the bed. The present paper extends the LEM so it can address probabilistic settling, where a particle encountering the bed can either remain there for a positive length of time (i.e., settle) or immediately reflect back into the water column, each with positive probability. Previous results for the LEM are generalized by deducing a single set of equations governing the probability distribution and moments of a broad class of quantities that accumulate during particle trajectories terminated by hitting or settling on the bed (e.g., transport time, transport distance, cumulative energy expenditure during transport). Key properties of the settling-time and settling-distance distributions are studied numerically and compared with the observed FPOM settling-distance distribution for a natural stream. Some remaining limitations of the LEM and possible means of overcoming them are discussed.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号