首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   980篇
  免费   93篇
  国内免费   1篇
  2022年   7篇
  2021年   19篇
  2019年   10篇
  2018年   20篇
  2017年   12篇
  2016年   17篇
  2015年   21篇
  2014年   24篇
  2013年   35篇
  2012年   50篇
  2011年   56篇
  2010年   47篇
  2009年   31篇
  2008年   58篇
  2007年   44篇
  2006年   29篇
  2005年   31篇
  2004年   42篇
  2003年   44篇
  2002年   27篇
  2001年   18篇
  2000年   23篇
  1999年   18篇
  1998年   10篇
  1997年   11篇
  1996年   10篇
  1995年   14篇
  1993年   7篇
  1992年   15篇
  1991年   10篇
  1990年   15篇
  1989年   12篇
  1988年   9篇
  1987年   11篇
  1985年   9篇
  1984年   14篇
  1983年   12篇
  1982年   13篇
  1980年   9篇
  1979年   7篇
  1978年   11篇
  1975年   9篇
  1974年   9篇
  1972年   10篇
  1971年   8篇
  1969年   8篇
  1959年   6篇
  1957年   6篇
  1945年   7篇
  1939年   6篇
排序方式: 共有1074条查询结果,搜索用时 15 毫秒
81.
82.
The purpose of this study was to compare nutritionally enriched JavaFit coffee (JF) to commercially available decaffeinated coffee (P) with regard to impact on endurance and anaerobic power performance in a physically active, college-aged population. Ten subjects (8 men, 2 women) performed two 30-second Wingate anaerobic power tests and 2 cycle ergometer tests (75% VO2 max) to exhaustion. Mean VO2 was measured during each endurance exercise protocol. Excess postexercise oxygen consumption (EPOC) and respiratory exchange ratio (RER) were recorded for 30 minutes following all exercise sessions. Area under the curve analysis was used to compare EPOC between JF and P for all exercise sessions. No differences were seen between JF and P in any of the power performance measures. However, time to exhaustion was significantly (p = 0.05) higher in JF (35.3 +/- 15.2 minutes) compared with P (27.3 +/- 10.7 minutes). No difference between JF and P were seen in EPOC in either the aerobic or anaerobic exercise sessions. A significant (p < 0.05) difference in average 30-minute postanaerobic power exercise RER was seen between JF (0.87 +/- 0.04) and P (0.83 +/- 0.03), but not following endurance exercise. A nutritionally-enriched coffee beverage appears to enhance time to exhaustion during aerobic exercise, but does not provide an ergogenic benefit during anaerobic exercise.  相似文献   
83.
Phenotypic heterogeneity among individual cells within isogenic populations is widely documented, but its consequences are not well understood. Here, cell-to-cell variation in the stress resistance of Saccharomyces cerevisiae, particularly to cadmium, was revealed to depend on the antioxidant glutathione. Heterogeneity was decreased strikingly in gsh1 mutants. Furthermore, cells sorted according to differing reduced-glutathione (GSH) contents exhibited differing stress resistances. The vacuolar GSH-conjugate pathway of detoxification was implicated in heterogeneous Cd resistance. Metabolic oscillations (ultradian rhythms) in yeast are known to modulate single-cell redox and GSH status. Gts1p stabilizes these oscillations and was found to be required for heterogeneous Cd and hydrogen-peroxide resistance, through the same pathway as Gsh1p. Expression of GTS1 from a constitutive tet-regulated promoter suppressed oscillations and heterogeneity in GSH content, and resulted in decreased variation in stress resistance. This enabled manipulation of the degree of gene expression noise in cultures. It was shown that cells expressing Gts1p heterogeneously had a competitive advantage over more-homogeneous cell populations (with the same mean Gts1p expression), under continuous and fluctuating stress conditions. The results establish a novel molecular mechanism for single-cell heterogeneity, and demonstrate experimentally fitness advantages that depend on deterministic variation in gene expression within cell populations.  相似文献   
84.
McKay RM  McKay JP  Suh JM  Avery L  Graff JM 《EMBO reports》2007,8(12):1183-1189
Tripeptidyl peptidase II (TPPII) is a multifunctional and evolutionarily conserved protease. In the mammalian hypothalamus, TPPII has a proposed anti-satiety role affected by degradation of the satiety hormone cholecystokinin 8. Here, we show that TPPII also regulates the metabolic homoeostasis of Caenorhabditis elegans; TPPII RNA interference (RNAi) decreases worm fat stores. However, this occurs independently of feeding behaviour and seems to be a function within fat-storing tissues. In mammalian cell culture, TPPII stimulates adipogenesis and TPPII RNAi blocks adipogenesis. The pro-adipogenic action of TPPII seems to be independent of protease function, as catalytically inactive TPPII also increases adipogenesis. Mice that were homozygous for an insertion in the Tpp2 locus were embryonic lethal. However, Tpp2 heterozygous mutants were lean compared with wild-type littermates, although food intake was normal. These findings indicate that TPPII has central and peripheral roles in regulating metabolism and that TPPII actions in fat-storing tissues might be an ancient function carried out in a protease-independent manner.  相似文献   
85.
86.
The state of collagen molecules in the fibres of tail tendon, skin and demineralized bone has been investigated in situ using differential scanning calorimetry (DSC). Hydroxyproline analysis and tissue digestion with bacterial collagenase and trypsin were used to confirm that the common cause of all the DSC endotherms was collagen denaturation. This occurred within a narrow temperature range in tendons, but over a wide temperature range in demineralized bone and old skin and demonstrated that in tendon and demineralized bone at least the same type I collagen molecule exists in different thermal states. Hypothesizing that this might be caused by different degrees of confinement within the fibre lattice, experiments were performed to measure the effect of changing the lattice dimensions by extracting the collagen into dilute solution with pepsin, swelling the lattice in acetic acid, and contracting the lattice by dehydration. A theoretical analysis was undertaken to predict the effect of dehydration. Results were consistent with the hypothesis, demonstrating that collagen molecules within the natural fibres of bone and old skin are located at different intermolecular spacings, revealing differences between molecules in the magnitude of either the attractive or repulsive forces controlling their separation. One potential cause of such variation is known differences in covalent cross-linking.  相似文献   
87.

Objective

The combined thickness of the intima and media of the carotid artery (carotid intima-medial thickness, CIMT) is associated with cardiovascular disease and stroke. Previous studies indicate that carotid intima-medial thickness is a significantly heritable phenotype, but the responsible genes are largely unknown. Hexose-6 phosphate dehydrogenase (H6PDH) is a microsomal enzyme whose activity regulates corticosteroid metabolism in the liver and adipose tissue; variability in measures of corticosteroid metabolism within the normal range have been associated with risk factors for cardiovascular disease. We performed a genetic association study in 854 members of 224 families to assess the relationship between polymorphisms in the gene coding for hexose-6 phosphate dehydrogenase (H6PD) and carotid intima-medial thickness.

Methods

Families were ascertained via a hypertensive proband. CIMT was measured using B-mode ultrasound. Single nucleotide polymorphisms (SNPs) tagging common variation in the H6PD gene were genotyped. Association was assessed following adjustment for significant covariates including “classical” cardiovascular risk factors. Functional studies to determine the effect of particular SNPs on H6PDH were performed.

Results

There was evidence of association between the single nucleotide polymorphism rs17368528 in exon five of the H6PD gene, which encodes an amino-acid change from proline to leucine in the H6PDH protein, and mean carotid intima-medial thickness (p = 0.00065). Genotype was associated with a 5% (or 0.04 mm) higher mean carotid intima-medial thickness measurement per allele, and determined 2% of the population variability in the phenotype.

Conclusions

Our results suggest a novel role for the H6PD gene in atherosclerosis susceptibility.  相似文献   
88.
89.
90.
Although a role for liver fatty acid protein (L-FABP) in the metabolism of branched-chain fatty acids has been suggested based on data obtained with cultured cells, the physiological significance of this observation remains to be demonstrated. To address this issue, the lipid phenotype and metabolism of phytanic acid, a branched-chain fatty acid, were determined in L-FABP gene-ablated mice fed a diet with and without 1% phytol (a metabolic precursor to phytanic acid). In response to dietary phytol, L-FABP gene ablation exhibited a gender-dependent lipid phenotype. Livers of phytol-fed female L-FABP–/– mice had significantly more fatty lipid droplets than male L-FABP–/– mice, whereas in phytol-fed wild-type L-FABP+/+ mice differences between males and females were not significant. Thus L-FABP gene ablation exacerbated the accumulation of lipid droplets in phytol-fed female, but not male, mice. These results were reflected in the lipid profile, where hepatic levels of triacylglycerides in phytol-fed female L-FABP–/– mice were significantly higher than in male L-FABP–/– mice. Furthermore, livers of phytol-fed female L-FABP–/– mice exhibited more necrosis than their male counterparts, consistent with the accumulation of higher levels of phytol metabolites (phytanic acid, pristanic acid) in liver and serum, in addition to increased hepatic levels of sterol carrier protein (SCP)-x, the only known peroxisomal enzyme specifically required for branched-chain fatty acid oxidation. In summary, L-FABP gene ablation exerted a significant role, especially in female mice, in branched-chain fatty acid metabolism. These effects were only partially compensated by concomitant upregulation of SCP-x in response to L-FABP gene ablation and dietary phytol. gene targeting; phytanic acid  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号