首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   29篇
  2021年   4篇
  2020年   3篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   4篇
  2013年   5篇
  2012年   7篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   7篇
  2002年   7篇
  2001年   5篇
  2000年   3篇
  1999年   8篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   6篇
  1992年   11篇
  1991年   6篇
  1990年   5篇
  1989年   4篇
  1988年   8篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1979年   5篇
  1978年   5篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1968年   3篇
  1966年   3篇
  1957年   2篇
  1956年   3篇
排序方式: 共有234条查询结果,搜索用时 15 毫秒
71.
Most trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to influence the growth of entire forests remains unknown. Here we tested the effects of EMF composition and functional genes relative to variation in well-known drivers of tree growth by combining paired molecular EMF surveys with high-resolution forest inventory data across 15 European countries. We show that EMF composition was linked to a three-fold difference in tree growth rate even when controlling for the primary abiotic drivers of tree growth. Fast tree growth was associated with EMF communities harboring high inorganic but low organic nitrogen acquisition gene proportions and EMF which form contact versus medium-distance fringe exploration types. These findings suggest that EMF composition is a strong bio-indicator of underlying drivers of tree growth and/or that variation of forest EMF communities causes differences in tree growth. While it may be too early to assign causality or directionality, our study is one of the first to link fine-scale variation within a key component of the forest microbiome to ecosystem functioning at a continental scale.Subject terms: Microbial ecology, Forest ecology, Fungal ecology, Biogeochemistry  相似文献   
72.
The crystal structure of human purple acid phosphatase recombinantly expressed in Escherichia coli (rHPAP(Ec)) and Pichia pastoris (rHPAP(Pp)) has been determined in two different crystal forms, both at 2.2A resolution. In both cases, the enzyme crystallized in its oxidized (inactive) state, in which both Fe atoms in the dinuclear active site are Fe(III). The main difference between the two structures is the conformation of the enzyme "repression loop". Proteolytic cleavage of this loop in vivo or in vitro results in significant activation of the mammalian PAPs. In the crystals obtained from rHPAP(Ec), the carboxylate side-chain of Asp145 of this loop acts as a bidentate ligand that bridges the two metal atoms, in a manner analogous to a possible binding mode for a phosphate ester substrate in the enzyme-substrate complex. The carboxylate side-chain of Asp145 and the neighboring Phe146 side-chain thus block the active site, thereby inactivating the enzyme. In the crystal structure of rHPAP(Pp), the enzyme "repression loop" has an open conformation similar to that observed in other mammalian PAP structures. The present structures demonstrate that the repression loop exhibits significant conformational flexibility, and the observed alternate binding mode suggests a possible inhibitory role for this loop.  相似文献   
73.
We studied 37 unrelated families with a history of 21-hydroxylase deficiency (CYP21D) for eight common mutations and gene deletions in the 21-hydroxylase (CYP21) gene. We found de novo mutations in the CYP21 gene in two CYP21D patients. Analysis for eight common mutations in the 21-hydroxylase gene as well as large gene deletions was accomplished using polymerase chain reaction (PCR) followed by amplified created restriction site (ACRS) or restriction fragment length polymorphism (RFLP) and Southern blot followed by hybridization to a CYP21-specific probe. Linkage analysis was performed using microsatellite markers flanking the CYP21 gene. Ten short tandem repeat (STR) markers were used to confirm parentage in the two de novo mutation cases. In two prenatal diagnosis cases, an intron 2-13A/C>G mutation was identified in the proband, but not in the fetus, although the proband and fetus had identical linkage markers. Subsequently, the mutation was confirmed to be absent in the parents' genome and misparentage was ruled out. Our findings are consistent with previous studies showing a de novo mutation frequency of approximately 1.0-1.5% in the CYP21 gene. This new mutation rate is high relative to the rate of approximately one in one million for other autosomal recessive disorders. Thus, the de novo mutation rate in the CYP21 gene is not negligible. It must be considered and discussed in prenatal diagnosis and genetic counseling for this relatively common inherited disorder.  相似文献   
74.
Ischemic stimulation of cardiac receptors evokes excitatory sympathetic reflexes. Although the nucleus of the solitary tract (NTS) is an important site for integration of visceral afferents, its involvement in the cardiac-renal sympathetic reflex remains to be fully defined. This study examined the role of glutamate receptor subtypes in the commissural NTS in the sympathetic responses to stimulation of cardiac receptors. Renal sympathetic nerve activity (RSNA) was recorded in anesthetized rats. Cardiac receptors were stimulated by epicardial application of bradykinin (BK; 10 microg/ml). Application of BK significantly increased the mean arterial pressure from 78.2 +/- 2.2 to 97.5 +/- 2.9 mmHg and augmented RSNA by 38.5 +/- 2.5% (P < 0.05). Bilateral microinjection of 10 pmol of 6-cyano-7-nitroquinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA) antagonist, into the commissural NTS eliminated the pressor and RSNA responses to BK application in 10 rats. However, microinjection of 2-amino-5-phosphonopentanoic acid (0.1 and 1 nmol, n = 8), an NMDA- receptor antagonist, or alpha-methyl-4-carboxyphenylglycine (0.1 and 1 nmol, n = 5), a glutamate metabotropic receptor antagonist, failed to attenuate significantly the pressor and RSNA responses to stimulation of cardiac receptors with BK. Thus this study suggests that non-NMDA, but not NMDA and glutamate metabotropic, receptors in the commissural NTS play an important role in the sympathoexcitatory reflex response to activation of cardiac receptors during myocardial ischemia.  相似文献   
75.
Molecular mapping of thrombin-receptor interactions   总被引:19,自引:0,他引:19  
In addition to its procoagulant and anticoagulant roles in the blood coagulation cascade, thrombin works as a signaling molecule when it interacts with the G-protein coupled receptors PAR1, PAR3, and PAR4. We have mapped the thrombin epitopes responsible for these interactions using enzymatic assays and Ala scanning mutagenesis. The epitopes overlap considerably, and are almost identical to those of fibrinogen and fibrin, but a few unanticipated differences are uncovered that help explain the higher (90-fold) specificity of PAR1 relative to PAR3 and PAR4. The most critical residues for the interaction with the PARs are located around the active site where mutations affect recognition in the order PAR4 > PAR3 > PAR1. Other important residues for PAR binding cluster in a small area of exosite I where mutations affect recognition in the order PAR1 > PAR3 > PAR4. Owing to this hierarchy of effects, the mutation W215A selectively compromises PAR4 cleavage, whereas the mutation R67A abrogates the higher specificity of PAR1 relative to PAR3 and PAR4. 3D models of thrombin complexed with PAR1, PAR3, and PAR4 are constructed and account for the perturbations documented by the mutagenesis studies.  相似文献   
76.
77.
78.
Azaspiracids (AZAs) are a group of lipophilic polyether compounds first detected in Ireland which have been implicated in shellfish poisoning incidents around Europe. These toxins regularly effect shellfish mariculture operations including protracted closures of shellfish harvesting areas for human consumption. The armoured dinoflagellate Azadinium spinosum Elbrächter et Tillmann gen. et sp. nov. (Dinophyceae) has been described as the de novo azaspiracid toxin producer; nonetheless the link between this organism and AZA toxin accumulation in shellfish has not yet been established. In August 2009, shellfish samples of blue mussel (Mytilus edulis) from the Southwest of Ireland were analysed using liquid chromatography–tandem-mass spectrometry (LC–MS/MS) and were found to be above the regulatory limit (0.16 μg g−1 AZA-equiv.) for AZAs. Water samples from this area were collected and one algal isolate was identified as A. spinosum and was shown to produce azaspiracid toxins. This is the first strain of A. spinosum isolated from Irish waters. The Irish A. spinosum is identical with the other two available A. spinosum strains from Scotland (3D9) and from Denmark (UTHE2) in its sequence of the D1–D2 regions of the LSU rDNA.A 24 h feeding trial of blue mussels (M. edulis) using an algal suspension of the Irish A. spinosum culture at different cell densities demonstrated that A. spinosum is filtered, consumed and digested directly by mussels. Also, LC–MS/MS analysis had shown that AZAs were accumulating in the shellfish hepatopancreas. The toxins AZA1 and -2 were detected in the shellfish together with the AZA analogues AZA3, AZA6, AZA17 and -19 suggesting that AZA1 and -2 are metabolised in the shellfish within the first 24 h after ingestion of the algae. The levels of AZA17 detected in the shellfish hepatopancreas (HP) were equivalent to the levels of AZA1 but in the remainder tissues the levels of AZA17 were four to five times higher than that of AZA1, only small quantities of AZA3 and -19 were present with negligible amounts of AZA6 detected after the 24 h period. This could have implications in the future monitoring of these toxins given that at present according to EU legislation only AZA1–AZA3 is regulated for. This is the first report of blue mussels’ (M. edulis) feeding on the azaspiracid producing algae A. spinosum from Irish waters.  相似文献   
79.
Zahn KE  Averill A  Wallace SS  Doublié S 《Biochemistry》2011,50(47):10350-10358
5-Hydroxycytosine (5-OHC) is a stable oxidation product of cytosine associated with an increased frequency of C → T transition mutations. When this lesion escapes recognition by the base excision repair pathway and persists to serve as a templating base during DNA synthesis, replicative DNA polymerases often misincorporate dAMP at the primer terminus, which can lead to fixation of mutations and subsequent disease. To characterize the dynamics of DNA synthesis opposite 5-OHC, we initiated a comparison of unmodified dCMP to 5-OHC, 5-fluorocytosine (5-FC), and 5-methylcytosine (5-MEC) in which these bases act as templates in the active site of RB69 gp43, a high-fidelity DNA polymerase sharing homology with human replicative DNA polymerases. This study presents the first crystal structure of any DNA polymerase binding this physiologically important premutagenic DNA lesion, showing that while dGMP is stabilized by 5-OHC through normal Watson-Crick base pairing, incorporation of dAMP leads to unstacking and instability in the template. Furthermore, the electronegativity of the C5 substituent appears to be important in the miscoding potential of these cytosine-like templates. While dAMP is incorporated opposite 5-OHC ~5 times more efficiently than opposite unmodified dCMP, an elevated level of incorporation is also observed opposite 5-FC but not 5-MEC. Taken together, these data imply that the nonuniform templating by 5-OHC is due to weakened stacking capabilities, which allows dAMP incorporation to proceed in a manner similar to that observed opposite abasic sites.  相似文献   
80.
The key material for bioethanol production is cellulose, which is one of the main components of the plant cell wall. Enzymatic depolymerization of cellulose is an essential step in bioethanol production, and can be accomplished by fungal and bacterial cellulases. Most of the biochemically characterized bacterial cellulases come from only a few cellulose-degrading bacteria, thus limiting our knowledge of a range of cellulolytic activities that exist in nature. The recent explosion of genomic data offers a unique opportunity to search for novel cellulolytic activities; however, the absence of clear understanding of structural and functional features that are important for reliable computational identification of cellulases precludes their exploration in the genomic datasets. Here, we explore the diversity of cellulases and propose a genomic approach to overcome this bottleneck.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号