首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   23篇
  2021年   2篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   8篇
  2014年   5篇
  2013年   21篇
  2012年   16篇
  2011年   14篇
  2010年   7篇
  2009年   4篇
  2008年   12篇
  2007年   17篇
  2006年   13篇
  2005年   4篇
  2004年   7篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   5篇
  1998年   2篇
  1997年   2篇
  1994年   2篇
  1993年   5篇
  1991年   3篇
  1990年   7篇
  1988年   4篇
  1987年   2篇
  1986年   6篇
  1985年   8篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1959年   1篇
  1953年   2篇
  1952年   1篇
  1945年   2篇
  1904年   1篇
  1900年   1篇
  1899年   1篇
排序方式: 共有232条查询结果,搜索用时 171 毫秒
41.
42.
The effect of post-treatment temperature on the toxicity of cyhexatin to cyhexatin-susceptible (S) and resistant (R) strains ofTetranychus urticae Koch was investigated. Females and developmental stages of both strains showed a positive temperature-toxicity coefficient with wettable powder (WP) and emulsifiable concentrate (EC) formulations of cyhexatin. Females of the S strain were 3.0× and 2.9× less susceptible at 15°C than at 28°C with the EC and WP formulations respectively, while females of the R strain were 5.2× and 23.6× less susceptible at 15°C with these formulations.  相似文献   
43.
Calf thyroid slices were found to incorporate [35S] sulfate into two major plasma membrane glycoproteins, which have been previously designated as GP-1 and GP-3 (Okada, Y., and Spiro, R. G. (1980) J. Biol. Chem. 255, 8865-8872). The 35S-glycoproteins were identified on the basis of their characteristic solubility and electrophoretic migration as well as their affinity for Bandeiraea simplicifolia I lectin. After pronase digestion of these glycoproteins, the 35S-label remained associated with the glycopeptides primarily on asparagine-linked carbohydrate units which were released by hydrazinolysis. Examination of the reduced radio-labeled products obtained by nitrous acid cleavage of the hydrazine-liberated oligosaccharides indicated that sulfate esters of N-acetylglucosamine occurred at three locations on the carbohydrate units; two 35S-monosaccharides (2,5-anhydromannitol 4- and 6-sulfate) and one 35S-disaccharide (beta-Gal(1----4)-2,5-anhydromannitol(6-SO4] were formed. The disaccharide is believed to be derived from an internal sulfated N-acetyllactosamine sequence while the monosaccharides most likely originate from 4- and 6-sulfated N-acetylglucosamine residues situated, respectively, at the non-reducing and reducing termini of the oligosaccharide units. Quantitation by NaB[3H]4 reduction of the sulfated saccharides obtained by nitrous acid treatment of hydrazine-released oligosaccharides from unlabeled GP-3 indicated that about 20% of the asparagine-linked carbohydrate units contain sulfate substituents.  相似文献   
44.
45.
46.
47.
Studies of low density lipoprotein (LDL) metabolism in nonhuman model systems have indicated that the mammalian liver has dual mechanisms for the uptake and regulation of the concentration of plasma LDL. Heretofore, direct evaluation of lipoprotein uptake mechanisms in human hepatocytes has not been possible. In order to compare hepatocyte LDL uptake with fibroblast LDL metabolism, human hepatocytes were isolated and cultured from small biopsy specimens obtained from normolipidemic and homozygous familial hypercholesterolemic patients. Cells cultured in serum-free culture medium retained the morphological and biochemical characteristics of hepatocytes for at least 7 days. The uptake and degradation of LDL by hepatocytes was compared to that of the cultured human fibroblasts. Like fibroblasts, hepatocytes bound, internalized, and degraded LDL. In both cell types, uptake approached saturation at a concentration of 50 micrograms of LDL protein/ml. Competition for LDL binding by LDL, high density lipoprotein, and modified LD revealed that the hepatocyte binding was specific for LDL. Cellular cholesterol loading by incubation in LDL-enriched culture medium resulted in diminished LDL uptake in both cell types. Chemical modification of LDL by acetoacetylation, acetylation, and reductive methylation abolished LDL uptake and degradation by fibroblasts. However, hepatocytes bound and degraded the modified LDL at 30-50% the level of native LDL. Homozygous familial hypercholesterolemic hepatocytes were devoid of the LDL receptor pathway but metabolized native LDL to the extent observed with modified LDL uptake by normal hepatocytes. In contrast to the classic LDL receptor pathway, the second or alternate pathway does not lead to regulation of 3-hydroxy-3-methylglutaryl-CoA reductase activity. These findings indicate the presence of two separate pathways of LDL uptake in human hepatocytes which have different effects on hepatocytic cholesterol metabolism.  相似文献   
48.
49.
Aims:  The absence of standardized methods for quantifying faecal indicator bacteria (FIB) in sand hinders comparison of results across studies. The purpose of the study was to compare methods for extraction of faecal bacteria from sands and recommend a standardized extraction technique.
Methods and Results:  Twenty-two methods of extracting enterococci and Escherichia coli from sand were evaluated, including multiple permutations of hand shaking, mechanical shaking, blending, sonication, number of rinses, settling time, eluant-to-sand ratio, eluant composition, prefiltration and type of decantation. Tests were performed on sands from California, Florida and Lake Michigan. Most extraction parameters did not significantly affect bacterial enumeration. anova revealed significant effects of eluant composition and blending; with both sodium metaphosphate buffer and blending producing reduced counts.
Conclusions:  The simplest extraction method that produced the highest FIB recoveries consisted of 2 min of hand shaking in phosphate-buffered saline or deionized water, a 30-s settling time, one-rinse step and a 10 : 1 eluant volume to sand weight ratio. This result was consistent across the sand compositions tested in this study but could vary for other sand types.
Significance and Impact of the Study:  Method standardization will improve the understanding of how sands affect surface water quality.  相似文献   
50.
We investigated the prevalence and diversity of Escherichia coli strains isolated from surface waters from multiple watersheds within the South Nation River basin in eastern Ontario, Canada. The basin is composed of mixed but primarily agricultural land uses. From March 2004 to November 2007, a total of 2,004 surface water samples were collected from 24 sampling sites. E. coli densities ranged from undetectable to 1.64 × 105 CFU 100 ml−1 and were correlated with stream order and proximity to livestock production systems. The diversity of 21,307 E. coli isolates was characterized using repetitive extragenic palindromic PCR (rep-PCR), allowing for the identification of as many as 7,325 distinct genotypes, without capturing all of the diversity. The community was temporally and spatially dominated by a few dominant genotypes (clusters of more than 500 isolates) and several genotypes of intermediary abundance (clustering between 10 and 499 isolates). Simpson diversity indices, assessed on a normalized number of isolates per sample, ranged from 0.050 to 0.668. Simpson indices could be statistically discriminated on the basis of year and stream order, but land use, discharge, weather, and water physical-chemical properties were not statistically important discriminators. The detection of Campylobacter species was associated with statistically lower Simpson indices (greater diversity; P < 0.05). Waterborne E. coli isolates from genotypes of dominant and intermediary abundance were clustered with isolates obtained from fecal samples collected in the study area over the same period, and 90% of the isolates tested proved to share genotypes with fecal isolates. Overall, our data indicated that the densities and distribution of E. coli in these mixed-use watersheds were linked to stream order and livestock-based land uses. Waterborne E. coli populations that were distinct from fecal isolates were detected and, on this basis, were possibly naturalized E. coli strains.Escherichia coli is ubiquitously distributed in fecal material from humans and warm-blooded animals (38). The detection of E. coli in water is an implicit indicator of recent fecal contamination and therefore of the risk of cooccurrence of enteric pathogens that can cause illness in susceptible populations (62). Many jurisdictions evaluate and mandate compliance with drinking and recreational water quality standards on the basis of the presence and abundance of E. coli (14, 44). For example, Canadian recreational water quality standards stipulate that E. coli densities in excess of a geometric mean of 200 CFU per 100 ml indicate that the water is unsuitable for swimming and bathing (23).In a background of increasing occurrence of microbial contamination of surface water, a variety of methods for elucidating the sources of fecal contamination have been developed, and these microbial source tracking (MST) methods are recommended components of fecal pollution abatement strategies (16, 57). So-called library-dependent MST methods compare environmental isolates to collections of isolates obtained from likely sources of fecal pollution in the area of investigation. The host source is distinguished on the basis of the similarity of environmental isolates to reference fecal isolates. Comparison can be undertaken on the basis of genomic fingerprinting methods, including repetitive extragenic palindromic PCR (rep-PCR), ribotyping, or pulsed-field gel electrophoresis (PFGE) (13, 17, 31, 54, 57). A variety of studies using these methods have revealed enormous diversity in the fecal and environmental E. coli populations. For example, 461 distinct PFGE genotypes and 175 distinct enterobacterial repetitive intergenic consensus (ERIC)-PCR genotypes were detected in a collection of 555 E. coli strains isolated from river water in Texas (10). As many as 291 and 94 rep-PCR genotypes were distinguished in collections of 643 river isolates and 353 beach water E. coli isolates, respectively (43). Significant diversity was also revealed using multilocus enzyme electrophoresis (MLEE) and multilocus sequence typing (MLST) on 185 E. coli isolates from freshwater beaches, where an average of 40 alleles per locus were detected (59). Almost 60% of 657 E. coli isolates in a fecal reference collection had unique (i.e., detected in only one individual) fingerprints determined by rep-PCR (32). Extensive diversity of E. coli was also observed in soils in temperate climates, where the growth and persistence of “naturalized” populations without any known fecal input have been found (7, 28, 30). Naturalized populations have been dominated by the B1 phylogroup and may have adapted in ways that enhance their survival in temperate secondary habitats (59). The temporal and spatial diversity of E. coli may not be a significant factor in coarse-source (e.g., human versus animal) classification of E. coli by means of ribotyping procedures (48). Ultimately, the characterization and understanding of the diversity of populations of selected microorganisms in surface watercourses affected by multiple sources of fecal pollution (as in agricultural watershed settings, for example) may be more critical for assessing the specific impacts of contamination-mitigating measures than previously thought. For instance, restricting the access of cattle on pasture to adjacent water by implementing vegetative buffering along watercourses creates habitat for varied wildlife, which then contribute to fecal pollution. In this context, the diversity in populations of indicator bacteria could be useful for better understanding how changes in landscape use influence fecal source inputs.As part of a research program evaluating the impact of agriculture on water quality and the efficacy of better agricultural management practices to mitigate agricultural pollution, we have conducted a multiyear study of the microbiological water quality for a suite of different-sized watersheds in the South Nation River basin in eastern Ontario, Canada (41, 46, 61). Land use in this river basin is mixed, consisting primarily of agricultural activities, light urban development, and interspersed wildlife habitat. Surface water systems in the study region differ widely in their contributing areas and therefore in their discharges (61).In the work undertaken here, we sought to determine the spatial and seasonal variability in the density and the structure of populations of E. coli in surface waters within the South Nation River basin. The specific objectives of the study were (i) to characterize the seasonal distribution and abundance of E. coli in different watershed settings within the river basin, (ii) to evaluate the spatial distribution of E. coli densities and diversity with respect to upstream land use activities, (iii) to use rep-PCR to elucidate the dominant E. coli genotypes and the diversity of E. coli populations and to explore linkages to pathogen presence, season, and environmental and land use variables, and (iv) using rep-PCR, to evaluate the concordance between waterborne isolates and fecal isolates obtained from within the study area. The study is distinguished by an intensive 4-year sampling of numerous (n = 24) sites that differed in their stream order and proximal land use activity; the number of E. coli isolates (≈21,000) included in the analysis; and the use of two distinct rep-PCR fingerprinting methods (ERIC and BOXA1R) to characterize the isolates. Furthermore, we used classification and Regression Tree (CART) analysis to evaluate relationships between the abundance and diversity of E. coli in water samples and environmental and land use variables.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号