首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5446篇
  免费   658篇
  国内免费   3篇
  2022年   40篇
  2021年   91篇
  2020年   49篇
  2019年   62篇
  2018年   79篇
  2017年   75篇
  2016年   118篇
  2015年   182篇
  2014年   193篇
  2013年   265篇
  2012年   279篇
  2011年   297篇
  2010年   168篇
  2009年   153篇
  2008年   216篇
  2007年   217篇
  2006年   181篇
  2005年   203篇
  2004年   187篇
  2003年   190篇
  2002年   222篇
  2001年   165篇
  2000年   163篇
  1999年   134篇
  1998年   97篇
  1997年   90篇
  1996年   69篇
  1995年   66篇
  1994年   57篇
  1993年   58篇
  1992年   105篇
  1991年   109篇
  1990年   87篇
  1989年   80篇
  1988年   68篇
  1987年   84篇
  1986年   55篇
  1985年   64篇
  1984年   51篇
  1983年   45篇
  1982年   44篇
  1981年   51篇
  1980年   50篇
  1979年   50篇
  1978年   56篇
  1977年   48篇
  1976年   39篇
  1975年   53篇
  1974年   48篇
  1973年   44篇
排序方式: 共有6107条查询结果,搜索用时 31 毫秒
61.
To study factors influencing patency and configuration of the upper airway, we studied 11 infant cadavers using endoscopy and photography. In most cases, studies were performed shortly after death. The naso-, oro-, and hypopharynx and the larynx were studied. The upper airway was sealed at the nose and mouth so that transmural airway pressure could be raised or lowered. As pressure was lowered airway closure was seen in each of the four regions studied. With respect to closing pressure, the oropharynx was the most compliant region and the larynx the least compliant. In the naso-, oro-, and hypopharynx, lowering the transmural pressure was associated with inward movement of the anterior, posterior, and lateral airway walls. In the larynx, closure occurred by vocal cord opposition in the midline. Tension applied to the genioglossus and geniohyoid tongue muscles had an effect opposite to that of airway suction, causing a more or less symmetrical dilation of the naso- and oropharynx. When the airway was closed, additional tension was needed to produce airway reopening, suggesting that adhesion forces act to maintain airway closure. Neck flexion caused pharyngeal closure, and neck extension caused pharyngeal dilation. Secretions adherent to the walls of the airway visibly narrowed its lumen. The relevance of these findings for the obstructive sleep apnea and laryngomalacia syndromes is discussed.  相似文献   
62.
A current hypothesis for obstructive sleep apnea states that 1) negative airway pressure during inspiration can collapse the pharyngeal airway, and 2) neural control of pharyngeal airway-dilating muscles is important in preventing this collapse. To test this hypothesis we performed nasal mask occlusions to increase negative pharyngeal airway pressures during inspiration in eight normal and five micrognathic infants. Both groups developed midinspiratory pharyngeal obstruction, but obstruction was more frequent in micrognathic infants and varied in some infants with sleep state. The airway usually reopened with the subsequent expiration. The occasional failure to reopen was presumably due to pharyngeal wall adhesion. If airway obstruction occurred in sequential breaths during multiple-breath nasal mask occlusions in normal infants, there was a breath-by-breath change in the airway pressure associated with airway closure (airway closing pressure); the airway closing pressure became progressively more negative. Micrognathic infants showed less ability to improve the airway closing pressure, but this ability increased with age. These findings suggest that nasal mask occlusion can test the competence of the neuromuscular mechanisms that maintain pharyngeal airway patency in infants. Micrognathic infants had spontaneous midinspiratory pharyngeal airway obstructions during snoring. Their episodes of obstructive apnea began with midinspiratory pharyngeal obstruction similar to that seen during snoring and nasal mask occlusions. These findings imply a similar pathophysiology for snoring, spontaneous airway obstruction, and obstruction during snoring.  相似文献   
63.
The yield from glucose of ammonia-grown carbon-limited continuous cultures of Penicillium stipitatum was ca. 20% higher than that of nitrate-grown cultures at all growth rates examined. However, the yield from oxygen was similar during growth on both nitrogen sources. Under phosphate limitation the specific rate of gluconic acid and stipitatic acid production increased with growth rate, but the former product accounted for virtually 100% of the excreted carbon. Stipitatic acid was not produced under nitrogen limitation, and glucose supplied to the culture in excess of that required for growth was virtually quantatively converted into gluconic acid. Productivities of 11.4 g gluconic acid/L/h were stably maintained in continuous culture. Under conditions of glucose excess the enzyme glucose oxidase was excreted into the culture. The specific activity of this extracellular enzyme increased when the input glucose concentration to the culture was progressively increased. The excretion of a protein under nitrogen limitation suggests that this enzyme plays an important role under these conditions. Indeed, it was demonstrated that nitrogen-limited cultures did not overmetabolize gluconate at either pH 6.5 or 3.5, although up to 29 g/L gluconate was present in the culture. The Y(gluconate) and YO(2) of C- and N-limited gluconate-grown cultures were similar indicating that the rapid conversion of glucose to gluconate probably affords a means of regulating carbon flow in this organism. Nitrogen-limited cultures of P. stipitatum overmetabolized glucose to a much greater extent than acetate, fructose, or gluconate.  相似文献   
64.
65.
The stereochemical course of phospho transfer in the reaction catalyzed by adenylosuccinate synthetase from rat muscle has been determined with chiral [gamma-17O,18O]GTP gamma S as a substrate. The stereochemical configuration of the product, inorganic thiophosphate, was determined by 31P NMR after the compound was stereospecifically incorporated into ATP beta S. The reaction goes with net inversion of configuration, which is the course for a single phospho transfer, even though 6-phospho-IMP is probably an intermediate on the normal reaction pathway (Liebermann, I. (1956) J. Biol. Chem. 223, 327-339). The breakdown of this intermediate goes by C-O bond cleavage and so is not a true phospho transfer step. Thus, inversion of configuration during the course of this ligase reaction is consistent with a single phospho transfer step in the overall reaction, the formation of the phosphorylated intermediate.  相似文献   
66.
Summary In osmotic experiments involving cells of the euryhaline unicellular green algaChlorella emersonii exposed to hyperosmotic stress by immersion in a range of low molecular weight organic and inorganic solutes, a temporary breakdown in the selective permeability of the plasma membrane was observed during the initial phase of transfer to media of high osmotic strength (up to 2000 mosmol kg–1). Thus, although the cells appeared to obey the Boyle-van't Hoff relationship in all cases, showing approximately linear changes in volume (at high salinity) as a function of the reciprocal of the external osmotic pressure, the extent of change was least for the triitols, propylene glycol and glycerol, intermediate for glucose, sorbitol, NaCl and KCl, with greatest changes in media containing the disaccharides sucrose and maltose. In NaCl-treated cells, uptake of external solute and loss of internal ions was observed in response to hyperosmotic treatment while sucrose-treated cells showed no significant uptake of external solute, although loss of intracellular K+ was observed. These observations suggest that the widely used technique of estimating cellular turgor, and osmotic/nonosmotic volume by means of the changes in volume that occur upon transfer to media containing increasing amounts of either a low molecular weight organic solute or an inorganic salt may be subject to error. The assumption that all algal cells behave as ideal osmometers, with outer membranes that are permeable to water but not to solutes, during the course of such experiments is therefore incorrect, and the data need to be adjusted to take account of hyperosmotically induced external solute penetration and/or loss of intracellular osmotica before meaningful estimates of cell turgor and osmotic volume can be obtained.  相似文献   
67.
Unidirectional transport (influx and efflux) of adenine nucleotides in rat liver mitochondria was examined using carboxyatractyloside to inhibit rapid exchange of matrix and external adenine nucleotides via the adenine nucleotide translocase. Influx of adenine nucleotides was concentration-dependent. ATP was the preferred substrate with a Km of 2.67 mM and V of the preferred substrate with a Km of 2.67 mM and V of 8.33 nmol/min/mg of protein. For ADP, the Km was 14.7 mM and V was 10.8 nmol/min/mg of protein. Efflux of adenine nucleotides was also concentration-dependent, varying directly as a function of the matrix adenine nucleotide pool size. Any increase in the influx of adenine nucleotides was coupled to an increase in efflux. However, as the external ATP concentration was increased, influx was stimulated to a much greater extent than was efflux. This imbalance suggested that under certain conditions adenine nucleotide movement might be coupled to the movement of an alternate anion such as phosphate. Adenine nucleotide efflux increased as the external phosphate concentration was varied from 0.5 to 4 mM. Also, increasing the external phosphate concentration caused adenine nucleotide influx to decrease, suggesting competition. In the absence of external adenines and phosphate, no efflux occurred. Both adenine nucleotide influx and efflux were depressed if Mg2+ was omitted. Adenine nucleotide efflux in the presence of external phosphate was inhibited much less by lack of Mg2+ than was efflux in the presence of external ATP. This evidence supports a model in which either adenine nucleotides (probably with Mg2+) or phosphate can move across the mitochondrial membrane on a single carrier. Net adenine nucleotide movements can occur when adenine nucleotide movement is coupled to the movement of phosphate in the opposite direction.  相似文献   
68.
We have studied submicrosecond and microsecond rotational motions within the contractile protein myosin by observing the time-resolved anisotropy of both absorption and emission from the long-lived triplet state of eosin-5-iodoacetamide covalently bound to a specific site on the myosin head. These results, reporting anisotropy data up to 50 microseconds after excitation, extend by two orders of magnitude the time range of data on time-resolved site-specific probe motion in myosin. Optical and enzymatic analyses of the labeled myosin and its chymotryptic digests show that more than 95% of the probe is specifically attached to sulfhydryl-1 (SH1) on the myosin head. In a solution of labeled subfragment-1 (S-1) at 4 degrees C, absorption anisotropy at 0.1 microseconds after a laser pulse is about 0.27. This anisotropy decays exponentially with a rotational correlation time of 210 ns, in good agreement with the theoretical prediction for end-over-end tumbling of S-1, and with times determined previously by fluorescence and electron paramagnetic resonance. In aqueous glycerol solutions, this correlation time is proportional to viscosity/temperature in the microsecond time range. Furthermore, binding to actin greatly restricts probe motion. Thus the bound eosin is a reliable probe of myosin-head rotational motion in the submicrosecond and microsecond time ranges. Our submicrosecond data for myosin monomers (correlation time 400 ns) also agree with previous results using other techniques, but we also detect a previously unresolvable slower decay component (correlation time 2.6 microseconds), indicating that the faster motions are restricted in amplitude. This restriction is not consistent with the commonly accepted free-swivel model of S-1 attachment in myosin. In synthetic thick filaments of myosin, both fast (700 ns) and slow (5 microseconds) components of anisotropy decay are observed. In contrast to the data for monomers, the anisotropy of filaments has a substantial residual component (26% of the initial anisotropy) that does not decay to zero even at times as long as 50 microseconds, implying significant restriction in overall rotational amplitude. This result is consistent with motion restricted to a cone half-angle of about 50 degrees. The combined results are consistent with a model in which myosin has two principal sites of segmental flexibility, one giving rise to submicrosecond motions (possibly corresponding to the junction between S-1 and S-2) and the other giving rise to microsecond motions (possibly corresponding to the junction between S-2 and light meromyosin).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
69.
J. R. Evans  R. B. Austin 《Planta》1986,167(3):344-350
The specific activity of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) in crude extracts of leaves from euploid, amphiploid and alloplasmic lines of wheat fell into high or low categories (3.75 or 2.70 mol·mg–1·min–1, 30°C). For the alloplasmic lines, where the same hexaploid nuclear genome was substituted into different cytoplasms, the specific activity of RuBPCase was consistent with the type of cytoplasm (high for the B and S cytoplasms and low for the A and D cytoplasms). There was no evidence from the euploid and amphiploid lines that small subunits encoded in different nuclear genomes influenced the specific activity. High specific activity was conferred by possession of the chloroplast genome of the B-type cytoplasm which encodes the large subunit of RuBPCase. All lines with a cytoplasm derived from the Sitopsis section of wheat, with the exception of Aegilops longissima and A. speltoides 18940, had RuBPCase with high specific activity. In contrast with the euploid lines of A. longissima, the alloplasmic line containing A. longissima cytoplasm from a different source had RuBPCase with high specific activity. The difference in specific activity found here in-vitro was not apparent in-vivo when leaf gas exchange was measured.Abbreviation RuBP(Case) ribulose-1,5-bisphosphate (carboxylase)  相似文献   
70.
alpha-lactalbumin has at least three distinct cation binding regions: a Ca(II)-Gd(III) site, a Cu(II)-Zn(II) site and a VO2+ site as observed from electron paramagnetic resonance (EPR) studies of complexes with the bovine protein. Gadolinium, which bound to the calcium site of the protein with a subnanomolar dissociation constant, yielded EPR spectra at 9.5 GHz (X-band) that exhibited features from g = 8 to g = 2. At 35 GHz (Q-band) the central fine structure transition (Ms = 1/2----Ms = -1/2) gave a well-defined powder pattern. The zero-field splitting was large, as reflected in the second-order splitting of the central fine structure transition of about 1 kG. There was also evidence for additional, low affinity binding site(s) for Gd(III). Addition of either Zn(II) or Al(III) did not affect the amplitudes or positions of the bound Gd(III) EPR spectrum. The Cu(II)-alpha-lactalbumin complex gave a typical axially symmetric spectrum (g parallel = 2.260, g perpendicular = 2.056, A parallel = 171 G) with a partially resolved superhyperfine interaction attributable to at least one directly coordinated nitrogen ligand. Addition of Cu(II) to Gd(III)-alpha-lactalbumin gave an EPR spectrum that was a superposition of signals from the individual Gd(III)- and Cu(II)-alpha-LA spectra. The absence of any magnetic interactions in the Gd(III)-Cu(II)-alpha-lactalbumin species indicated that the two cation sites were more than 10 A apart. On the other hand, addition of Zn(II) to Cu(II)-alpha-lactalbumin gave a set of EPR lines due to free or loosely bound Cu(II), confirming that the Cu(II) was displaced by zinc.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号