首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2296篇
  免费   235篇
  国内免费   1篇
  2532篇
  2023年   17篇
  2022年   34篇
  2021年   55篇
  2020年   24篇
  2019年   33篇
  2018年   45篇
  2017年   41篇
  2016年   55篇
  2015年   79篇
  2014年   97篇
  2013年   142篇
  2012年   141篇
  2011年   132篇
  2010年   72篇
  2009年   77篇
  2008年   96篇
  2007年   81篇
  2006年   71篇
  2005年   95篇
  2004年   86篇
  2003年   77篇
  2002年   75篇
  2001年   42篇
  2000年   47篇
  1999年   47篇
  1998年   40篇
  1997年   35篇
  1996年   24篇
  1995年   29篇
  1994年   25篇
  1993年   26篇
  1992年   32篇
  1991年   35篇
  1990年   41篇
  1989年   32篇
  1988年   24篇
  1987年   30篇
  1986年   22篇
  1985年   19篇
  1983年   18篇
  1982年   18篇
  1981年   20篇
  1980年   15篇
  1979年   21篇
  1978年   20篇
  1977年   16篇
  1973年   15篇
  1971年   16篇
  1968年   15篇
  1967年   16篇
排序方式: 共有2532条查询结果,搜索用时 15 毫秒
31.
The presence of repeated elements in restriction fragments used as hybridization probes for chromosomal walking poses a major obstacle to the success of this gene-cloning strategy. This report describes a simple and rapid means of identifying restriction fragments devoid of repeated sequences and therefore useful as hybridization probes for chromosomal walking. Restriction fragments derived from a genomic DNA clone are Southern blotted and hybridized to nick-translated total genomic [32P]DNA. Fragments of the genomic clone that contain high abundance sequences (i.e., repeated elements) hybridize strongly to their nick-translated counterparts, which, due to their high copy number, comprise a significant proportion of the total genomic DNA probe. Conversely, fragments containing single-copy or low-abundance sequences do not hybridize, as their nick-translated counterparts are poorly represented in the total genomic DNA probe. These latter fragments, by virtue of their low-abundance sequences, are well suited as probes for chromosomal walking. Ensuring the absence of repeated elements in restriction fragments prior to their purification and utilization as chromosomal walking probes results in marked savings of time, effort and materials.  相似文献   
32.
33.
A theoretical model is presented for describing a previously untreated effect of viscosity on the apparent decomposition rate of enzyme-ligand complexes.Since the translational diffusion is hindered by the viscosity, its increased value results in an enlarged portion of ligands which can be rebound by the enzyme immediately after the dissociation of the complex.The model accounts for the experimentally observed decrease in maximal velocity of enzymic reactions at high viscosity. At the same time, it serves as a tool to obtain new information about the energetic processes of enzyme action.  相似文献   
34.
35.
36.
Methods have been developed for the measurements of catalase and superoxide dismutase (SOD) in single, isolated muscle fibers. These fibers are also classified according to fiber type. Catalase is determined using a fluorescent method for the measurement of hydrogen peroxide consumed. SOD measurements are carried out using a modification of established techniques whereby the inhibition of oxidation of epinephrine by SOD is assayed fluorometrically. Both enzymes may be determined in submicrogram samples of dried muscle. This approach avoids the complication of the inclusion of nonmuscle tissue with varying enzymatic activities which is frequently experienced when using homogenates of muscle, particularly diseased muscle. In addition, these techniques can be used to determine the inherent variation in SOD and catalase activities within individual fibers of the same fiber type. The Km and Vmax for catalase, determined using homogenates of human muscle, were found to be 12 mM and 1.45 mumol/min/mg dry wt, respectively. Catalase of muscle was inhibited 50% by 2 microM sodium azide. Mn-SOD contributes less than one-fifth of the total SOD activity. Therefore the activity is largely due to the Cu-Zn form of SOD. These methods are applicable to a wide variety of tissues.  相似文献   
37.
S-layers are paracrystalline proteinaceous lattices that surround prokaryotic cells, forming a critical interface between the cells and their extracellular environment. Here, we report the discovery of a novel S-layer protein present in the Gram-negative marine organism, Pseudoalteromonas tunicata D2. An uncharacterized protein (EAR28894) was identified as the most abundant protein in planktonic cultures and biofilms. Bioinformatic methods predicted a beta-helical structure for EAR28894 similar to the Caulobacter S-layer protein, RsaA, despite sharing less than 20% sequence identity. Transmission electron microscopy revealed that purified EAR28894 protein assembled into paracrystalline sheets with a unique square lattice symmetry and a unit cell spacing of ~9.1 nm. An S-layer was found surrounding the outer membrane in wild-type cells and completely removed from cells in an EAR28894 deletion mutant. S-layer material also appeared to be “shed” from wild-type cells and was highly abundant in the extracellular matrix where it is associated with outer membrane vesicles and other matrix components. EAR28894 and its homologs form a new family of S-layer proteins that are widely distributed in Gammaproteobacteria including species of Pseudoalteromonas and Vibrio, and found exclusively in marine metagenomes. We propose the name Slr4 for this novel protein family.  相似文献   
38.
Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh generation scheme. We hypothesise that Gaussian curvature analysis could be used to automatically develop a building block structure for multi-block hexahedral mesh generation. The Automated Building Block Algorithm incorporates principles from differential geometry, combinatorics, statistical analysis and computer science to automatically generate a building block structure to represent a given surface without prior information. We have applied this algorithm to 29 bones of varying geometries and successfully generated a usable mesh in all cases. This work represents a significant advancement in automating the definition of building blocks.  相似文献   
39.
40.
The genera Odontacolus Kieffer and Cyphacolus Priesner are among the most distinctive platygastroid wasps because of their laterally compressed metasomal horn; however, their generic status has remained unclear. We present a morphological phylogenetic analysis comprising all 38 Old World and four Neotropical Odontacolus species and 13 Cyphacolus species, which demonstrates that the latter is monophyletic but nested within a somewhat poorly resolved Odontacolus. Based on these results Cyphacolus syn. n. is placed as a junior synonym of Odontacolus which is here redefined. The taxonomy of Old World Odontacolus s.str. is revised; the previously known species Odontacolus longiceps Kieffer (Seychelles), Odontacolus markadicus Veenakumari (India), Odontacolus spinosus (Dodd) (Australia) and Odontacolus hackeri (Dodd) (Australia) are re-described, and 32 new species are described: Odontacolus africanus Valerio & Austin sp. n. (Congo, Guinea, Kenya, Madagascar, Mozambique, South Africa, Uganda, Zimbabwe), Odontacolus aldrovandii Valerio & Austin sp. n. (Nepal), Odontacolus anningae Valerio & Austin sp. n. (Cameroon), Odontacolus australiensis Valerio & Austin sp. n. (Australia), Odontacolus baeri Valerio & Austin sp. n. (Australia), Odontacolus berryae Valerio & Austin sp. n. (Australia, New Zealand, Norfolk Island), Odontacolus bosei Valerio & Austin sp. n. (India, Malaysia, Sri Lanka), Odontacolus cardaleae Valerio & Austin sp. n. (Australia), Odontacolus darwini Valerio & Austin sp. n. (Thailand), Odontacolus dayi Valerio & Austin sp. n. (Indonesia), Odontacolus gallowayi Valerio & Austin sp. n. (Australia), Odontacolus gentingensis Valerio & Austin sp. n. (Malaysia), Odontacolus guineensis Valerio & Austin sp. n. (Guinea), Odontacolus harveyi Valerio & Austin sp. n. (Australia), Odontacolus heratyi Valerio & Austin sp. n. (Fiji), Odontacolus heydoni Valerio & Austin sp. n. (Malaysia, Thailand), Odontacolus irwini Valerio & Austin sp. n. (Fiji), Odontacolus jacksonae Valerio & Austin sp. n. (Cameroon, Guinea, Madagascar), Odontacolus kiau Valerio & Austin sp. n. (Papua New Guinea), Odontacolus lamarcki Valerio & Austin sp. n. (Thailand), Odontacolus madagascarensis Valerio & Austin sp. n. (Madagascar), Odontacolus mayri Valerio & Austin sp. n. (Indonesia, Thailand), Odontacolus mot Valerio & Austin sp. n. (India), Odontacolus noyesi Valerio & Austin sp. n. (India, Indonesia), Odontacolus pintoi Valerio & Austin sp. n. (Australia, New Zealand, Norfolk Island), Odontacolus schlingeri Valerio & Austin sp. n. (Fiji), Odontacolus sharkeyi Valerio & Austin sp. n. (Thailand), Odontacolus veroae Valerio & Austin sp. n. (Fiji), Odontacolus wallacei Valerio & Austin sp. n. (Australia, Indonesia, Malawi, Papua New Guinea), Odontacolus whitfieldi Valerio & Austin sp. n. (China, India, Indonesia, Sulawesi, Malaysia, Thailand, Vietnam), Odontacolus zborowskii Valerio & Austin sp. n. (Australia), and Odontacolus zimi Valerio & Austin sp. n. (Madagascar). In addition, all species of Cyphacolus are here transferred to Odontacolus: Odontacolus asheri (Valerio, Masner & Austin) comb. n. (Sri Lanka), Odontacolus axfordi (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus bhowaliensis (Mani & Mukerjee) comb. n. (India), Odontacolus bouceki (Austin & Iqbal) comb. n. (Australia), Odontacolus copelandi (Valerio, Masner & Austin) comb. n. (Kenya, Nigeria, Zimbabwe, Thailand), Odontacolus diazae (Valerio, Masner & Austin) comb. n. (Kenya), Odontacolus harteni (Valerio, Masner & Austin) comb. n. (Yemen, Ivory Coast, Paskistan), Odontacolus jenningsi (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus leblanci (Valerio, Masner & Austin) comb. n. (Guinea), Odontacolus lucianae (Valerio, Masner & Austin) comb. n. (Ivory Coast, Madagascar, South Africa, Swaziland, Zimbabwe), Odontacolus normani (Valerio, Masner & Austin) comb. n. (India, United Arab Emirates), Odontacolus sallyae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus tessae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus tullyae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus veniprivus (Priesner) comb. n. (Egypt), and Odontacolus watshami (Valerio, Masner & Austin) comb. n. (Africa, Madagascar). Two species of Odontacolus are transferred to the genus Idris Förster: Idris longispinosus (Girault) comb. n. and Idris amoenus (Kononova) comb. n., and Odontacolus doddi Austin syn. n. is placed as a junior synonym of Odontacolus spinosus (Dodd). Odontacolus markadicus, previously only known from India, is here recorded from Brunei, Malaysia, Sri Lanka, Thailand and Vietnam. The relationships, distribution and biology of Odontacolus are discussed, and a key is provided to identify all species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号