首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   28篇
  395篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   13篇
  2020年   6篇
  2019年   13篇
  2018年   11篇
  2017年   12篇
  2016年   18篇
  2015年   33篇
  2014年   36篇
  2013年   30篇
  2012年   42篇
  2011年   38篇
  2010年   22篇
  2009年   15篇
  2008年   15篇
  2007年   18篇
  2006年   16篇
  2005年   12篇
  2004年   11篇
  2003年   10篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1995年   1篇
  1986年   1篇
排序方式: 共有395条查询结果,搜索用时 11 毫秒
11.
12.
The ability of Interleukin-15 (IL-15) to activate many immune antitumor mechanisms renders the cytokine a good candidate for the therapy of solid tumors, particularly renal cell carcinoma. Although IL-15 is being currently used in clinical trials, the function of the cytokine on kidney's components has not been extensively studied; we thus investigated the role of IL-15 on normal and tumor renal epithelial cells. Herein, we analyzed the expression and the biological functions of IL-15 in normal renal proximal tubuli (RPTEC) and in their neoplastic counterparts, the renal clear cell carcinomas (RCC). This study shows that RPTEC express a functional heterotrimeric IL-15Rαβγc complex whose stimulation with physiologic concentrations of rhIL-15 is sufficient to inhibit epithelial mesenchymal transition (EMT) commitment preserving E-cadherin expression. Indeed, IL-15 is not only a survival factor for epithelial cells, but it can also preserve the renal epithelial phenotype through the γc-signaling pathway, demonstrating that the cytokine possess a wide range of action in epithelial homeostasis. In contrast, in RCC in vitro and in vivo studies reveal a defect in the expression of γc-receptor and JAK3 associated kinase, which strongly impacts IL-15 signaling. Indeed, in the absence of the γc/JAK3 couple we demonstrate the assembly of an unprecedented functional high affinity IL-15Rαβ heterodimer, that in response to physiologic concentrations of IL-15, triggers an unbalanced signal causing the down-regulation of the tumor suppressor gene E-cadherin, favoring RCC EMT process. Remarkably, the rescue of IL-15/γc-dependent signaling (STAT5), by co-transfecting γc and JAK3 in RCC, inhibits EMT reversion. In conclusion, these data highlight the central role of IL-15 and γc-receptor signaling in renal homeostasis through the control of E-cadherin expression and preservation of epithelial phenotype both in RPTEC (up-regulation) and RCC (down-regulation).  相似文献   
13.
Moyamoya is a cerebrovascular condition characterized by a progressive stenosis of the terminal part of the internal carotid arteries (ICAs) and the compensatory development of abnormal “moyamoya” vessels. The pathophysiological mechanisms of this condition, which leads to ischemic and hemorrhagic stroke, remain unknown. It can occur as an isolated cerebral angiopathy (so-called moyamoya disease) or in association with various conditions (moyamoya syndromes). Here, we describe an autosomal-recessive disease leading to severe moyamoya and early-onset achalasia in three unrelated families. This syndrome is associated in all three families with homozygous mutations in GUCY1A3, which encodes the α1 subunit of soluble guanylate cyclase (sGC), the major receptor for nitric oxide (NO). Platelet analysis showed a complete loss of the soluble α1β1 guanylate cyclase and showed an unexpected stimulatory role of sGC within platelets. The NO-sGC-cGMP pathway is a major pathway controlling vascular smooth-muscle relaxation, vascular tone, and vascular remodeling. Our data suggest that alterations of this pathway might lead to an abnormal vascular-remodeling process in sensitive vascular areas such as ICA bifurcations. These data provide treatment options for affected individuals and strongly suggest that investigation of GUCY1A3 and other members of the NO-sGC-cGMP pathway is warranted in both isolated early-onset achalasia and nonsyndromic moyamoya.  相似文献   
14.
Male gametes formed in the testis, the site of spermatogenesis, continue their maturation outside of the gonad in the genital tract. The epididymis is at the centre of this process of post-testicular maturation of spermatozoa, responsible for acquisition of their mobility and their ability to recognize and penetrate an oocyte, essential events for fertilization. During their transit in the epididymal ducts, gametes evolve in a perpetually changing luminal environment due to complex interactions of secretion and reabsorption activities of the epididymal epithelium. These numerous secretion and reabsorption activities are closely regulated in space and time, which makes this epididymal epithelium a very complex tissue subject to an elaborate network of cross-regulations. Apart from classical endocrine and paracrine regulations, the proximal part of the epididymis is also subject to lumicrine regulation by testicular factors which increase the complexity of the regulation networks involved. The present study tries to present an exhaustive review of the factors demonstrated in the literature to exert a modulation of epididymal activity.  相似文献   
15.
The Jun Kinase (JNK) signaling pathway responds to diverse stimuli by appropriate and specific cellular responses such as apoptosis, differentiation or proliferation. The mechanisms that mediate this specificity remain largely unknown. The core of this signaling pathway, composed of a JNK protein and a JNK kinase (JNKK), can be activated by various putative JNKK kinases (JNKKK) which are themselves downstream of different adaptor proteins. A proposed hypothesis is that the JNK pathway specific response lies in the combination of a JNKKK and an adaptor protein upstream of the JNKK. We previously showed that the Drosophila homolog of pRb (Rbf1) and a mutant form of Rbf1 (Rbf1D253A) have JNK-dependent pro-apoptotic properties. Rbf1D253A is also able to induce a JNK-dependent abnormal proliferation. Here, we show that Rbf1-induced apoptosis triggers proliferation which depends on the JNK pathway activation. Taking advantage of these phenotypes, we investigated the JNK signaling involved in either Rbf1-induced apoptosis or in proliferation in response to Rbf1-induced apoptosis. We demonstrated that 2 different JNK pathways involving different adaptor proteins and kinases are involved in Rbf1-apoptosis (i.e. Rac1-dTak1-dMekk1-JNK pathway) and in proliferation in response to Rbf1-induced apoptosis (i.e., dTRAF1-Slipper-JNK pathway). Using a transient induction of rbf1, we show that Rbf1-induced apoptosis activates a compensatory proliferation mechanism which also depends on Slipper and dTRAF1. Thus, these 2 proteins seem to be key players of compensatory proliferation in Drosophila.  相似文献   
16.

Background

Human apurinic/apyrimidinic endonuclease 1 (APE1) is a key DNA repair enzyme involved in both base excision repair (BER) and nucleotide incision repair (NIR) pathways. In the BER pathway, APE1 cleaves DNA at AP sites and 3′-blocking moieties generated by DNA glycosylases. In the NIR pathway, APE1 incises DNA 5′ to a number of oxidatively damaged bases. At present, physiological relevance of the NIR pathway is fairly well established in E. coli, but has yet to be elucidated in human cells.

Methodology/Principal Finding

We identified amino acid residues in the APE1 protein that affect its function in either the BER or NIR pathway. Biochemical characterization of APE1 carrying single K98A, R185A, D308A and double K98A/R185A amino acid substitutions revealed that all mutants exhibited greatly reduced NIR and 3′→5′ exonuclease activities, but were capable of performing BER functions to some extent. Expression of the APE1 mutants deficient in the NIR and exonuclease activities reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to an alkylating agent, methylmethanesulfonate, suggesting that our APE1 mutants are able to repair AP sites. Finally, the human NIR pathway was fully reconstituted in vitro using the purified APE1, human flap endonuclease 1, DNA polymerase β and DNA ligase I proteins, thus establishing the minimal set of proteins required for a functional NIR pathway in human cells.

Conclusion/Significance

Taken together, these data further substantiate the role of NIR as a distinct and separable function of APE1 that is essential for processing of potentially lethal oxidative DNA lesions.  相似文献   
17.
We tested the hypothesis that changing the gut microbiota using pectic oligosaccharides (POS) or inulin (INU) differently modulates the progression of leukemia and related metabolic disorders. Mice were transplanted with Bcr-Abl-transfected proB lymphocytes mimicking leukemia and received either POS or INU in their diet (5%) for 2 weeks. Combination of pyrosequencing, PCR-DGGE and qPCR analyses of the 16S rRNA gene revealed that POS decreased microbial diversity and richness of caecal microbiota whereas it increased Bifidobacterium spp., Roseburia spp. and Bacteroides spp. (affecting specifically B. dorei) to a higher extent than INU. INU supplementation increased the portal SCFA propionate and butyrate, and decreased cancer cell invasion in the liver. POS treatment did not affect hepatic cancer cell invasion, but was more efficient than INU to decrease the metabolic alterations. Indeed, POS better than INU delayed anorexia linked to cancer progression. In addition, POS treatment increased acetate in the caecal content, changed the fatty acid profile inside adipose tissue and counteracted the induction of markers controlling β-oxidation, thereby hampering fat mass loss. Non digestible carbohydrates with prebiotic properties may constitute a new nutritional strategy to modulate gut microbiota with positive consequences on cancer progression and associated cachexia.  相似文献   
18.
A lack of oxygen is classically described as a major cause of impaired wound healing in diabetic patients. Even if the role of oxygen in the wound healing process is well recognized, measurement of oxygen levels in a wound remains challenging. The purpose of the present study was to assess the value of electron paramagnetic resonance (EPR) oximetry to monitor pO2 in wounds during the healing process in diabetic mouse models. Kinetics of wound closure were carried out in streptozotocin (STZ)-treated and db/db mice. The pO2 was followed repeatedly during the healing process by 1 GHz EPR spectroscopy with lithium phthalocyanine (LiPc) crystals used as oxygen sensor in two different wound models: a full-thickness excisional skin wound and a pedicled skin flap. Wound closure kinetics were dramatically slower in 12-week-old db/db compared to control (db/+) mice, whereas kinetics were not statistically different in STZ-treated compared to control mice. At the center of excisional wounds, measurements were highly influenced by atmospheric oxygen early in the healing process. In pedicled flaps, hypoxia was observed early after wounding. While reoxygenation occurred over time in db/+ mice, hypoxia was prolonged in the diabetic db/db model. This observation was consistent with impaired healing and microangiopathies observed using intravital microscopy. In conclusion, EPR oximetry using LiPc crystals as the oxygen sensor is an appropriate technique to follow wound oxygenation in acute and chronic wounds, in normal and diabetic animals. Nevertheless, the technique is limited for measurements in pedicled skin flaps and cannot be applied to excisional wounds in which diffusion of atmospheric oxygen significantly affects the measurements.  相似文献   
19.
20.
The adhesion of primary chondrocytes to polyelectrolyte multilayer films, made of poly(l-lysine) (PLL) and hyaluronan (HA), was investigated for native and crosslinked films, either ending by PLL or HA. Crosslinking the film was achieved by means of a water-soluble carbodiimide in combination with N-hydroxysulfosuccinimide. The adhesion of macrophages and primary chondrocytes was investigated by microscopical techniques (optical, confocal, and atomic), providing useful information on the cell/film interface. Native films were found to be nonadhesive for the, primary chondrocytes, but could be degraded by macrophages, as could be visualized by confocal laser scanning microscopy after film labeling. Confocal microscopy images show that these films can be deformed by the condrocytes and that PLL diffuses at the chondrocyte membrane. In contrast, the cells adhered and proliferated well on the crosslinked films, which were not degraded by the macrophages. These results were confirmed by a MTT test over a 6-d period and by atomic force microscopy observations. We thus prove that chemical crosslinking can dramatically change cell adhesion properties, the cells being more stably anchored on the crosslinked films. Both authors kcontributed equally.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号