首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   18篇
  227篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   9篇
  2015年   11篇
  2014年   11篇
  2013年   13篇
  2012年   18篇
  2011年   22篇
  2010年   15篇
  2009年   18篇
  2008年   14篇
  2007年   13篇
  2006年   8篇
  2005年   9篇
  2004年   8篇
  2003年   4篇
  2002年   8篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1979年   1篇
  1974年   1篇
  1969年   1篇
  1967年   1篇
  1947年   1篇
排序方式: 共有227条查询结果,搜索用时 15 毫秒
141.
142.
143.
144.
Two Caribbean strains (1651 and 1655) of the ciguatera-causing dinoflagellate Gambierdiscus toxicus were grown in xenic, batch culture under defined, measured nutrient conditions with nitrate, ammonium, urea, a mix of free amino acids (FAA), or putrescine as the nitrogen source. Cultures were maintained at 27 °C, salinity 35, 110 μmol m−2 s−1 (12 h:12 h light:dark cycle) on L2 medium at an initial nitrogen concentration of 50 μM N. Toxicity was determined using a ouabain/veratridine-dependent cytotoxicity assay (N2A assay) standardized to a ciguatoxin standard. Nitrate, ammonium, FAA, and putrescine supported growth, but urea did not. The appearance of ammonium in the organic nitrogen cultures indicated that G. toxicus and/or associated bacteria remineralized the available organic nitrogen. Both strains were exposed to nitrogen-limiting conditions as evidenced by chlorophyll a content per cell, nitrogen content, and nitrogen (N) to phosphorus (P) (N:P) ratio significantly declining once nitrogen was no longer available in the medium and cells entered stationary phase. Strain 1651 grew significantly faster than strain 1655 when nitrate, FAA, and putrescine was the nitrogen source, but not ammonium. Nitrogen source had no effect on growth rate (0.14 d−1) in strain 1651. The growth rate of strain 1655 (0.10–0.13 d−1) was significantly faster on ammonium than the other nitrogen sources. Strain 1655 was significantly more toxic (10-fold) than strain 1651 except when growing on ammonium at exponential phase. Toxicity ranged from 1.3 to 8.7 fg C-CTX1-Eq cell−1 in strain 1651 and from 30.7 to 54.3 fg C-CTX1-Eq cell−1 in strain 1655. Nitrogen source had no significant affect on toxicity. Toxicity was greater in stationary versus exponential phase cells for strain 1651 when grown on nitrate and strain 1655 regardless of nitrogen source. The difference in toxicity between growth phases may result from an increase in ciguatoxin and/or maitotoxin. Our results suggest that some strains of G. toxicus when associated with bacteria are able to take advantage of organic as well as inorganic nitrogen sources on short time scales to support future growth. The uncoupling of total nitrogen and phosphorus pools from conditions in the water column suggest that instantaneous growth rates can be supported by nutrients acquired hours to days earlier.  相似文献   
145.
146.
Bacteria colonize reactive minerals in soils where they contribute to mineral weathering and transformation. So far, the specificity, patterns and dynamics of mineral colonization have rarely been assessed under natural conditions. High throughput Illumina sequencing was employed to investigate the bacterial communities assembling on illite and goethite during exposure to natural grassland soils. Two different types of organic carbon sources, simple carbon compounds representing root exudates and detritus of two dominant grassland plant species were applied, and their effects on the temporal dynamics of bacterial communities were investigated. The observed temporal patterns suggest that the surfaces of de novo exposed minerals in soils drive the establishment of bacterial communities and override the effect of the type of carbon sources and of other environmental properties. Mineral colonization was selective and specific bacterial sequence variants exhibited distinct colonization patterns, among which early, intermittent, and late colonizers could be distinguished. Based on our results, soil minerals are not only colonized by specific bacterial communities but enable a succession of different bacterial communities. Our results thereby expand the concept of the mineralosphere and provide novel insights into mechanisms of community assembly in the soil ecosystem.  相似文献   
147.
Surgery is the primary therapeutic strategy for most solid tumours; however, modern oncology has established that neoplasms are frequently systemic diseases. Being however a local treatment, the mechanisms through which surgery plays its systemic role remain unknown. We have investigated the influence of cytoreduction on the immune system of primary and recurrent ovarian cancer. All ovarian cancer patients show an increase in CD4+CD25+FOXP3+ circulating cells (CD4 Treg). CD4/CD8 ratio is increased in primary tumours, but not in recurrent neoplasms. Primary cytoreduction is able to increase circulating CD4 and CD8 effector cells and decrease CD4 naïve T cells. CD4+ Treg cells rapidly decreased after primary tumour debulking, while CD8+CD25+FOXP3+ (CD8 Treg) cells are not detectable in peripheral blood. Similar results on CD4 Treg were observed with chemical debulking in women subjected to neoadjuvant chemotherapy. CD4 and CD8 Treg cells are both present in neoplastic tissue. Interleukin (IL)‐10 serum levels decrease after surgery, while no changes are observed in transforming growth factor‐β1 and IL‐6 levels. Surgically induced reduction of the immunosuppressive environment results in an increased capacity of CD8+ T cells to respond to the recall antigens. None of these changes was observed in patients previously subjected to chemotherapy or affected by recurrent disease. In conclusion, we demonstrate in ovarian cancer that primary debulking is associated with a reduction of circulating Treg and an increase in CD8 T‐cell function. Debulking plays a beneficial systemic effect by reverting immunosuppression and restoring immunological fitness.  相似文献   
148.
Systems and Synthetic Biology use computational models of biological pathways in order to study in silico the behaviour of biological pathways. Mathematical models allow to verify biological hypotheses and to predict new possible dynamical behaviours. Here we use the tools of non-linear analysis to understand how to change the dynamics of the genes composing a novel synthetic network recently constructed in the yeast Saccharomyces cerevisiae for In-vivo Reverse-engineering and Modelling Assessment (IRMA). Guided by previous theoretical results that make the dynamics of a biological network depend on its topological properties, through the use of simulation and continuation techniques, we found that the network can be easily turned into a robust and tunable synthetic oscillator or a bistable switch. Our results provide guidelines to properly re-engineering in vivo the network in order to tune its dynamics.  相似文献   
149.
150.
The antioxidant properties of α-tocopherol have been proposed to play a beneficial chemopreventive role against cancer. However, emerging data also indicate that it may exert contrasting effects on the efficacy of chemotherapeutic treatments when given as dietary supplement, being in that case harmful for patients. This dual role of α-tocopherol and, in particular, its effects on the efficacy of anticancer drugs remains poorly documented. For this purpose, we studied here, using high throughput flow cytometry, the direct impact of α-tocopherol on apoptosis and cell cycle arrest induced by different cytotoxic agents on various models of cancer cell lines in vitro. Our results indicate that physiologically relevant concentrations of α-tocopherol strongly compromise the cytotoxic and cytostatic action of various protein kinase inhibitors (KI), while other classes of chemotherapeutic agents or apoptosis inducers are unaffected by this vitamin. Interestingly, these anti-chemotherapeutic effects of α-tocopherol appear to be unrelated to its antioxidant properties since a variety of other antioxidants were completely neutral toward KI-induced cell cycle arrest and cell death. In conclusion, our data suggest that dietary α-tocopherol could limit KI effects on tumour cells, and, by extent, that this could result in a reduction of the clinical efficacy of anti-cancer treatments based on KI molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号