首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4617篇
  免费   250篇
  国内免费   3篇
  2023年   25篇
  2022年   31篇
  2021年   76篇
  2020年   49篇
  2019年   66篇
  2018年   93篇
  2017年   83篇
  2016年   119篇
  2015年   201篇
  2014年   189篇
  2013年   284篇
  2012年   537篇
  2011年   1083篇
  2010年   482篇
  2009年   556篇
  2008年   186篇
  2007年   185篇
  2006年   119篇
  2005年   81篇
  2004年   92篇
  2003年   66篇
  2002年   39篇
  2001年   30篇
  2000年   17篇
  1999年   17篇
  1998年   7篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   16篇
  1993年   8篇
  1992年   16篇
  1991年   11篇
  1990年   4篇
  1989年   9篇
  1988年   5篇
  1987年   7篇
  1986年   8篇
  1984年   4篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1975年   5篇
  1974年   2篇
  1973年   6篇
  1972年   4篇
  1971年   2篇
  1970年   4篇
  1969年   4篇
  1967年   6篇
排序方式: 共有4870条查询结果,搜索用时 15 毫秒
121.
The colorful heliconiine butterflies are distasteful to predators due to their content of defense compounds called cyanogenic glucosides (CNglcs), which they biosynthesize from aliphatic amino acids. Heliconiine larvae feed exclusively on Passiflora plants where ~30 kinds of CNglcs have been reported. Among them, some CNglcs derived from cyclopentenyl glycine can be sequestered by some Heliconius species. In order to understand the evolution of biosynthesis and sequestration of CNglcs in these butterflies and its consequences for their arms race with Passiflora plants, we analyzed the CNglc distribution in selected heliconiine and Passiflora species. Sequestration of cyclopentenyl CNglcs is not an exclusive trait of Heliconius, since these compounds were present in other heliconiines such as Philaethria, Dryas and Agraulis, and in more distantly related genera Cethosia and Euptoieta. Thus, it is likely that the ability to sequester cyclopentenyl CNglcs arose in an ancestor of the Heliconiinae subfamily. Biosynthesis of aliphatic CNglcs is widespread in these butterflies, although some species from the sara‐sapho group seem to have lost this ability. The CNglc distribution within Passiflora suggests that they might have diversified their cyanogenic profile to escape heliconiine herbivory. This systematic analysis improves our understanding on the evolution of cyanogenesis in the heliconiine–Passiflora system.  相似文献   
122.
OPA1, an intra-mitochondrial dynamin GTPase, is a key actor of outer and inner mitochondrial membrane dynamic. OPA1 amino-terminal cleavage by PARL and m-AAA proteases was recently proposed to participate to the mitochondrial network dynamic in a DeltaPsi(m)-dependent way, and to apoptosis. Here, by an in vitro approach combining the use of purified mitochondrial fractions and mitochondrial targeting drugs, we intended to identify the central stimulus responsible for OPA1 cleavage. We confirm that apoptosis induction and PTPore opening, as well as DeltaPsi(m) dissipation induce OPA1 cleavage. Nevertheless, our experiments evidenced that decreased mitochondrial ATP levels, either generated by apoptosis induction, DeltaPsi(m) dissipation or inhibition of ATP synthase, is the common and crucial stimulus that controls OPA1 processing. In addition, we report that ectopic iron addition activates OPA1 cleavage, whereas zinc inhibits this process. These results suggest that the ATP-dependent OPA1 processing plays a central role in correlating the energetic metabolism to mitochondrial dynamic and might be involved in the pathophysiology of diseases associated to excess of iron or depletion of zinc and ATP.  相似文献   
123.
Hemolysis or extensive cell damage can lead to high concentrations of free heme, causing oxidative stress and inflammation. Considering that heme induces neutrophil chemotaxis, we hypothesize that heme activates a G protein-coupled receptor. Here we show that similar to heme, several heme analogs were able to induce neutrophil migration in vitro and in vivo. Mesoporphyrins, molecules lacking the vinyl groups in their rings, were not chemotactic for neutrophils and selectively inhibited heme-induced migration. Moreover, migration of neutrophils induced by heme was abolished by pretreatment with pertussis toxin, an inhibitor of Galpha inhibitory protein, and with inhibitors of phosphoinositide 3-kinase, phospholipase Cbeta, mitogen-activated protein kinases, or Rho kinase. The induction of reactive oxygen species by heme was dependent of Galpha inhibitory protein and phosphoinositide 3-kinase and partially dependent of phospholipase Cbeta, protein kinase C, mitogen-activated protein kinases, and Rho kinase. Together, our results indicate that heme activates neutrophils through signaling pathways that are characteristic of chemoattractant molecules and suggest that mesoporphyrins might prove valuable in the treatment of the inflammatory consequences of hemorrhagic and hemolytic disorders.  相似文献   
124.
125.
126.
Huntingtin containing an expanded polyglutamine causes neuronal death and Huntington disease. Although expanded huntingtin is found in virtually every cell type, its toxicity is limited to neurons of certain areas of the brain, such as cortex and caudate/putamen. In affected areas of the brain, expanded huntingtin is not found in its intact monomeric form. It is found instead in the form of N-terminal fragments, oligomers and polymers, all of which accumulate in the cortex. Whereas the oligomer is mostly soluble, the polymers and the fragments associate with each other and with other proteins to form the insoluble inclusions characteristic of the disease. It is likely that the aggregates containing expanded huntingtin are toxic to neurons, but it remains to be determined whether the oligomer or the inclusion is the toxic species.Key Words: huntingtin, polyglutamine, aggregation, oligomer, polymer, N-terminal fragments, transglutaminase  相似文献   
127.
Duchenne muscular dystrophy (DMD) is a hereditary disease caused by mutations that disrupt the dystrophin mRNA reading frame. In some cases, forced exclusion (skipping) of a single exon can restore the reading frame, giving rise to a shorter, but still functional, protein. In this study, we constructed lentiviral vectors expressing antisense oligonucleotides in order to induce an efficient exon skipping and to correct the initial frameshift caused by the DMD deletion of CD133+ stem cells. The intramuscular and intra-arterial delivery of genetically corrected CD133 expressing myogenic progenitors isolated from the blood and muscle of DMD patients results in a significant recovery of muscle morphology, function, and dystrophin expression in scid/mdx mice. These data demonstrate that autologous engrafting of blood or muscle-derived CD133+ cells, previously genetically modified to reexpress a functional dystrophin, represents a promising approach for DMD.  相似文献   
128.
The annual reproductive cycle of Chinese water deer (Hydropotes inermis), a nearly threatened small cervid species, was studied by means of fecal steroid analysis coupled with behavioural observations. Data showed a clearly seasonal reproductive pattern. In adult males, the onset of androgen secretion, in October, was concomitant with the first manifestations of territoriality. Androgen metabolites concentrations reached significant peak values in December, when matings occurred. In mature females, there was a close synchrony in reproductive states: lactational/seasonal anoestrus from June to November, pregnancy from December to May. Fecal progesterone metabolites profiles suggested that silent ovulations occurred at the onset of breeding season and that females conceived at their first ovulation with behavioural estrus. The female sexual receptivity state might last only a few hours. High levels of sniffing, parades and pursuits, concomitant of the highest concentrations of androgen, could allow the males to detect the furtive estrus in the females present in their territory. We concluded that the non-invasive method applied for the first time in this species was useful for the evaluation of the endocrine status and its relation with behaviour.  相似文献   
129.
Understanding the mechanisms that help promote protective immune responses to pathogens is a major challenge in biomedical research and an important goal for the design of innovative therapeutic or vaccination strategies. While natural killer (NK) cells can directly contribute to the control of viral replication, whether, and how, they may help orchestrate global antiviral defense is largely unknown. To address this question, we took advantage of the well-defined molecular interactions involved in the recognition of mouse cytomegalovirus (MCMV) by NK cells. By using congenic or mutant mice and wild-type versus genetically engineered viruses, we examined the consequences on antiviral CD8 T cell responses of specific defects in the ability of the NK cells to control MCMV. This system allowed us to demonstrate, to our knowledge for the first time, that NK cells accelerate CD8 T cell responses against a viral infection in vivo. Moreover, we identify the underlying mechanism as the ability of NK cells to limit IFN-alpha/beta production to levels not immunosuppressive to the host. This is achieved through the early control of cytomegalovirus, which dramatically reduces the activation of plasmacytoid dendritic cells (pDCs) for cytokine production, preserves the conventional dendritic cell (cDC) compartment, and accelerates antiviral CD8 T cell responses. Conversely, exogenous IFN-alpha administration in resistant animals ablates cDCs and delays CD8 T cell activation in the face of NK cell control of viral replication. Collectively, our data demonstrate that the ability of NK cells to respond very early to cytomegalovirus infection critically contributes to balance the intensity of other innate immune responses, which dampens early immunopathology and promotes optimal initiation of antiviral CD8 T cell responses. Thus, the extent to which NK cell responses benefit the host goes beyond their direct antiviral effects and extends to the prevention of innate cytokine shock and to the promotion of adaptive immunity.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号