首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   34篇
  2022年   2篇
  2021年   10篇
  2020年   8篇
  2019年   10篇
  2018年   11篇
  2017年   5篇
  2016年   13篇
  2015年   22篇
  2014年   18篇
  2013年   21篇
  2012年   27篇
  2011年   26篇
  2010年   21篇
  2009年   15篇
  2008年   39篇
  2007年   26篇
  2006年   21篇
  2005年   15篇
  2004年   13篇
  2003年   28篇
  2002年   16篇
  2001年   13篇
  2000年   9篇
  1999年   15篇
  1998年   8篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1991年   8篇
  1990年   4篇
  1989年   5篇
  1988年   5篇
  1986年   3篇
  1984年   3篇
  1983年   2篇
  1982年   7篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1975年   4篇
  1973年   3篇
  1970年   2篇
  1969年   1篇
  1967年   2篇
  1966年   1篇
  1956年   1篇
排序方式: 共有501条查询结果,搜索用时 109 毫秒
411.
Steroid hormone (estrogens and androgens) synthesis and regulation involve a large number of enzymes and potential biochemical pathways. In the context of these biochemical pathways, it is believed that the true rate-limiting step in acute steroid production is the movement of cholesterol across the mitochondrial membrane by the steroidogenic acute regulatory (StAR) protein and the subsequent conversion to pregnenolone by cytochrome P450-mediated side-chain cleavage (P450scc) enzyme. Oocyte development is a complex process that is triggered by the maturation-promoting factor (MPF) involving cyclin-B as a regulatory factor. In the present study, we evaluated the endocrine effects of 17alpha-methyltestosterone (MT) on steroidogenic pathways of Atlantic cod (Gadus morhua), using an in vitro previtellogenic oocyte culture technique that is based on an agarose floating method. Tissue was cultured in a humidified incubator at 10 degrees C for 1, 5, 10 and 20 days with different concentrations of the synthetic androgen MT (0 (control), 1, 10, 100 and 1000 microM) dissolved in ethanol (0.3%). Gene expressions for StAR, P450scc, aromatase-alpha (P450aromA) and cyclin-B were detected using validated real-time PCR with specific primer pairs. Cellular localization of the StAR protein and P450scc were performed using the immunohistochemical technique with antisera prepared against synthetic peptide for both proteins. Steroid hormones (estradiol-17beta: E2 and testosterone: T) levels were estimated using enzyme immunoassay. Our data showed significant concentration-specific increase (at day 1 and 5) and decrease (at day 10 and 20) of the StAR mRNA expression after exposure to MT. P450scc expression showed a MT concentration-specific decrease during the exposure periods and cyclin-B mRNA expression was decreased in MT concentration-dependent manner at days 10 and 20 (reaching almost total inhibition after exposure to 1000 microM MT). MT exposure produced variable effects on the P450aromA mRNA expression that can be described as concentration-specific increase (day 1) and decrease (days 5 and 10). Cellular localization of the StAR protein and P450scc demonstrated their expression mainly in ovarian follicular cells. MT produced an apparent concentration-and time-dependent increase of E2 and T levels. Thus, the present study reveals some novel effects of pharmaceutical endocrine disruptor on the development of previtellogenic oocytes in cod. The impaired steroidogenesis and hormonal imbalance reported in the present study may have potential consequences for the vitellogenic process and overt fecundity in teleosts.  相似文献   
412.
A tool for improved tandem column chiral supercritical fluid chromatography (SFC) method development screening was prepared by modification of a commercial analytical SFC instrument with two different software-controllable, six position high-pressure column selection valves, each controlling a bank of five different columns and a pass through line. The resulting instrument, which has the ability to screen 10 different individual columns and 25 different tandem column arrangements, is a useful tool for facilitating the screening of tandem column SFC arrangements for separation of complex mixtures of stereoisomers or other multicomponent mixtures. Strategies for optimal use of the instrument are discussed, and several examples of the use of the instrument in developing tandem SFC methods for resolution of multicomponent mixtures are presented.  相似文献   
413.
The Fet3 protein from Saccharomyces cerevisiae is a multicopper oxidase with specificity toward Fe(II) and Cu(I). Fet3p turnover of Fe(II) supports high affinity iron uptake across the yeast plasma membrane, whereas its turnover of Cu(I) contributes to copper resistance in yeast. The structure of Fet3p has been used to identify possible amino acid residues responsible for this protein's reactivity with Cu(I), and structure-function analyses have confirmed this assignment. Fet3p Met(345) is required for the enzyme's reactivity toward Cu(I). Although the Fet3pM345A mutant exhibits wild type spectral and electrochemical behavior, the kinetic constants for Cu(I) turnover and for single-turnover electron transfer from Cu(I) to the enzyme are significantly reduced. The specificity constant with Cu(I) as substrate is reduced by one-fifth, whereas the electron transfer rate from Cu(I) is reduced 50-fold. This mutation has little effect on the reactivity toward Fe(II), indicating that Met(345) contributes specifically to Fet3p reactivity with the cuprous ion. These kinetic defects render the Fet3pM345A unable to support wild type cellular copper resistance, suggesting that there is a finely tuned copper redox balance at the yeast plasma membrane.  相似文献   
414.
Plants offer fast, flexible and easily scalable alternative platforms for the production of pharmaceutical proteins, but differences between plant and mammalian N‐linked glycans, including the presence of β‐1,2‐xylose and core α‐1,3‐fucose residues in plants, can affect the activity, potency and immunogenicity of plant‐derived proteins. Nicotiana benthamiana is widely used for the transient expression of recombinant proteins so it is desirable to modify the endogenous N‐glycosylation machinery to allow the synthesis of complex N‐glycans lacking β‐1,2‐xylose and core α‐1,3‐fucose. Here, we used multiplex CRISPR/Cas9 genome editing to generate N. benthamiana production lines deficient in plant‐specific α‐1,3‐fucosyltransferase and β‐1,2‐xylosyltransferase activity, reflecting the mutation of six different genes. We confirmed the functional gene knockouts by Sanger sequencing and mass spectrometry‐based N‐glycan analysis of endogenous proteins and the recombinant monoclonal antibody 2G12. Furthermore, we compared the CD64‐binding affinity of 2G12 glycovariants produced in wild‐type N. benthamiana, the newly generated FX‐KO line, and Chinese hamster ovary (CHO) cells, confirming that the glyco‐engineered antibody performed as well as its CHO‐produced counterpart.  相似文献   
415.
The saturated fatty acids acylated on Lipid A of lipopolysaccharide (LPS) or bacterial lipoproteins play critical roles in ligand recognition and receptor activation for Toll-like Receptor 4 (TLR4) and TLR2. The results from our previous studies demonstrated that saturated and polyunsaturated fatty acids reciprocally modulate the activation of TLR4. However, the underlying mechanism has not been understood. Here, we report for the first time that the saturated fatty acid lauric acid induced dimerization and recruitment of TLR4 into lipid rafts, however, dimerization was not observed in non-lipid raft fractions. Similarly, LPS and lauric acid enhanced the association of TLR4 with MD-2 and downstream adaptor molecules, TRIF and MyD88, into lipid rafts leading to the activation of downstream signaling pathways and target gene expression. However, docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, inhibited LPS- or lauric acid-induced dimerization and recruitment of TLR4 into lipid raft fractions. Together, these results demonstrate that lauric acid and DHA reciprocally modulate TLR4 activation by regulation of the dimerization and recruitment of TLR4 into lipid rafts. In addition, we showed that TLR4 recruitment to lipid rafts and dimerization were coupled events mediated at least in part by NADPH oxidase-dependent reactive oxygen species generation. These results provide a new insight in understanding the mechanism by which fatty acids differentially modulate TLR4-mediated signaling pathway and consequent inflammatory responses which are implicated in the development and progression of many chronic diseases.Toll-like receptors (TLRs)3 are one of the key pattern recognition receptor families that play a critical role in inducing innate and adaptive immune responses in mammals by recognizing conserved pathogen-associated molecular pattern of invading microbes. So far, at least thirteen TLRs have been identified in mammalian species (1, 2).Lipopolysaccharide (LPS) from Gram-negative bacteria is the ligand for the TLR4 complex (3), whereas, TLR2 can recognize lipoproteins/lipopeptides of Gram-positive bacteria and mycoplasma (1, 2). LPS forms a complex with LPS-binding protein in serum leading to the conversion of oligomeric micelles of LPS to monomers, which are delivered to CD14. Monomeric LPS is known to bind TLR4/MD-2/CD14 complex (4). Lipid A, which possesses most of the biological activities of LPS, is acylated with hydroxy saturated fatty acids. The 3-hydroxyl groups of these saturated fatty acids are further 3-Ο-acylated by saturated fatty acids. Removal of these Ο-acylated saturated fatty acids from Lipid A not only results in complete loss of endotoxic activity, but also makes Lipid A act as an antagonist against the native Lipid A (5, 6). One or more Lipid As containing unsaturated fatty acids are known to be non-toxic and act as an antagonist against endotoxin (7, 8). In addition, deacylated lipoproteins are unable to activate TLR2 and to induce cytokine expression in monocytes (9). Together, these results suggest that saturated fatty acids acylated on Lipid A or bacterial lipoproteins play critical roles in ligand recognition and receptor activation for TLR4 and TLR2. Indeed, it is suggested that the rapid interaction of bacterial lipopeptides with plasma membrane of macrophages occurs via insertion of their acylated saturated fatty acids as determined by electron energy loss spectroscopy and freeze-fracture techniques (10, 11). TLR2 can form a heterodimer with TLR1 or TLR6, which can discriminate the molecular structure of triacyl or diacyl lipopeptides (1214). So far there is no evidence that microbial ligands for other TLRs are acylated by saturated fatty acids.Results from our previous studies demonstrated that saturated fatty acids activate TLR4 and polyunsaturated fatty acids (PUFA) inhibit both saturated fatty acid- and LPS-induced activation of TLR4 (15, 16). In addition, the saturated fatty acid lauric acid potentiates, but the n-3 PUFA docosahexaenoic acid (DHA) inhibits lipopeptide (TLR2 agonist)-induced TLR2 activation (17). Together, these results suggest that both TLR2 and TLR4 signaling pathways and target gene expression are reciprocally modulated by saturated and polyunsaturated fatty acids. However, the mechanism for this modulation by fatty acids is not understood.TLR4 is recruited to lipid raft factions after cells are treated with LPS and subsequently induces tumor necrosis factor-α expression in RAW264.7 cells (18). This process occurs in an ROS-dependent manner because inhibition of NADPH oxidase suppresses TLR4 recruitment to lipid rafts (19). Methyl-β-dextrin, a lipid raft inhibitor, significantly inhibits the LPS-induced expression of cytokine (19), suggesting that lipid rafts are essential for TLR4-mediated signal transduction and target gene expression. Lipid rafts are a collection of lipid membrane microdomains characterized by insolubility in non-ionic detergents. Lipid rafts serve as a platform where receptor-mediated signal transduction is initiated (20). Lipid rafts have a special lipid composition that is rich in cholesterol, sphingomyelin, and glycolipids (21). The polar lipids in detergent-resistant membrane contain predominantly saturated fatty acyl residues with underrepresented PUFAs (2224), suggesting that saturated fatty acyl chains favor lipid raft association. On the other hand, n-3 PUFAs displace signaling proteins from lipid rafts by altering lipid composition, and the displacement leads to the suppression of T-cell receptor-mediated signaling (25). It is now well documented that TLRs form homo- or hetero-oligomers (1, 2). TLR4 homodimerization is the initial step of the receptor activation. Results from our previous studies suggest that the molecular target by which saturated fatty acids and n-3 PUFAs reciprocally modulate TLR4 activation is the receptor complex itself or the event leading to the receptor activation instead of the downstream signaling components (15, 16). Therefore, we determined whether the reciprocal modulation of TLR4 activation is mediated by regulation of the dimerization and recruitment of TLR4 into lipid rafts, and if these processes occur in an ROS-dependent manner.  相似文献   
416.
Objectives:  The aim of this study was to investigate mechanisms involved in the growth inhibitory effect of silymarin, in humanhepatocellular carcinoma.
Materials and Methods:  The human hepatocellular carcinoma cell line HepG2 was utilized and the MTT assay was performed to study the antiproliferative effect of silymarin. Dual staining was undertaken for ethidium bromide/acridine orange, propidium iodide staining and DNA fragmentation studies were executed to confirm the presence of apoptosis. Cell-cycle analysis was revealed by flow cytometry and mitochondrial transmembrane potential was measured by uptake of the mitochondrial-specific lipophilic cationic dye rhodamine 123. Western blotting analysis for cytochrome c, p53, Bax, Bcl-2, APAF-1, caspase-3, survivin, β-catenin, cyclin D1, c-Myc and PCNA was carried out.
Results:  Silymarin inhibited population growth of the hepatocellular carcinoma cells in a dose-dependent manner, and the percentage of apoptotic cells was increased after treatment with 50 and 75 µg/ml silymarin for 24 h. Silymarin treatment increased the proportion of cells with reduced DNA content (sub-G0/G1 or A0 peak), indicative of apoptosis with loss of cells in the G1 phase. Silymarin also decreased mitochondrial transmembrane potential of the cells, thereby increasing levels of cytosolic cytochrome c while up-regulating expression of pro-apoptotic proteins (such as p53, Bax, APAF-1 and caspase-3) with concomitant decrease in anti-apoptotic proteins (Bcl-2 and survivin) and proliferation-associated proteins (β-catenin, cyclin D1, c-Myc and PCNA).
Conclusions:  Our results demonstrate that silymarin treatment inhibited proliferation and induced apoptosis in the human hepatocellular carcinoma cell line HepG2.  相似文献   
417.

Introduction

Chronic low-grade inflammation is a significant factor in the development of obesity associated diabetes. This is supported by recent studies suggesting endotoxin, derived from gut flora, may be key to the development of inflammation by stimulating the secretion of an adverse cytokine profile from adipose tissue.

Aims

The study investigated the relationship between endotoxin and various metabolic parameters of diabetic patients to determine if anti-diabetic therapies exerted a significant effect on endotoxin levels and adipocytokine profiles.

Methods

Fasting blood samples were collected from consenting Saudi Arabian patients (BMI: 30.2 ± (SD)5.6 kg/m2, n = 413), consisting of non-diabetics (ND: n = 67) and T2DM subjects (n = 346). The diabetics were divided into 5 subgroups based on their 1 year treatment regimes: diet-controlled (n = 36), metformin (n = 141), rosiglitazone (RSG: n = 22), a combined fixed dose of metformin/rosiglitazone (met/RSG n = 100) and insulin (n = 47). Lipid profiles, fasting plasma glucose, insulin, adiponectin, resistin, TNF-α, leptin, C-reactive protein (CRP) and endotoxin concentrations were determined.

Results

Regression analyses revealed significant correlations between endotoxin levels and triglycerides (R2 = 0.42; p < 0.0001); total cholesterol (R2 = 0.10; p < 0.001), glucose (R2 = 0.076; p < 0.001) and insulin (R2 = 0.032; p < 0.001) in T2DM subjects. Endotoxin showed a strong inverse correlation with HDL-cholesterol (R2 = 0.055; p < 0.001). Further, endotoxin levels were elevated in all of the treated diabetic subgroups compared with ND, with the RSG treated diabetics showing significantly lower endotoxin levels than all of the other treatment groups (ND: 4.2 ± 1.7 EU/ml, RSG: 5.6 ± 2.2 EU/ml). Both the met/RSG and RSG treated groups had significantly higher adiponectin levels than all the other groups, with the RSG group expressing the highest levels overall.

Conclusion

We conclude that sub-clinical inflammation in T2DM may, in part, be mediated by circulating endotoxin. Furthermore, that whilst the endotoxin and adipocytokine profiles of diabetic patients treated with different therapies were comparable, the RSG group demonstrated significant differences in both adiponectin and endotoxin levels. We confirm an association between endotoxin and serum insulin and triglycerides and an inverse relationship with HDL. Lower endotoxin and higher adiponectin in the groups treated with RSG may be related and indicate another mechanism for the effect of RSG on insulin sensitivity.  相似文献   
418.
There are very few practical demonstrations of the phytoextraction of metals and metalloids from soils and sediments beyond small-scale and short-term trials. The two approaches used have been based on using 1) hyperaccumulator species, such as Thlaspi caerulescens (Pb, Zn, Cd, Ni), Alyssum spp. (Ni, Co), and Pteris vittata (As) or 2) fast-growing plants, such as Salix and Populus spp. that accumulate above-average concentrations of only a smaller number of the more mobile trace elements (Cd, Zn, B). Until we have advanced much more along the pathway of genetic isolation and transfer of hyperaccumulator traits into productive plants, there is a high risk in marketing either approach as a technology or stand-alone solution to clean up contaminated land. There are particular uncertainties over the longer-term effectiveness of phytoextraction and associated environmental issues. Marginally contaminated agricultural soils provide the most likely land use where phytoextraction can be used as a polishing technology. An alternative and more useful practical approach in many situations currently would be to give more attention to crops selected for phytoexclusion: selecting crops that do not translocate high concentrations of metals to edible parts. Soils of brownfield, urban, and industrial areas provide a large-scale opportunity to use phytoremediation, but the focus here should be on the more realistic possibilities of risk-managed phytostabilization and monitored natural attenuation. We argue that the wider practical applications of phytoremediation are too often overlooked. There is huge scope for cross-cutting other environmental agenda, with synergies that involve the recovery and provision of services from degraded landscapes and contaminated soils. An additional focus on biomass energy, improved biodiversity, watershed management, soil protection, carbon sequestration, and improved soil health is required for the justification and advancement of phytotechnologies.  相似文献   
419.
How does calcium trigger neurotransmitter release?   总被引:21,自引:0,他引:21  
Recent work has established that different geometric arrangements of calcium channels are found at different presynaptic terminals, leading to a wide spectrum of calcium signals for triggering neurotransmitter release. These calcium signals are apparently transduced by synaptotagmins - calcium-binding proteins found in synaptic vesicles. New biochemical results indicate that all synaptotagmins undergo calcium-dependent interactions with membrane lipids and a number of other presynaptic proteins, but which of these interactions is responsible for calcium-triggered transmitter release remains unclear.  相似文献   
420.
Reduced transport of amino acids from mother to fetus can lead to fetal intrauterine growth restriction (IUGR). The activities of several amino acid transport systems, including system A, are decreased in placental syncytiotrophoblast of IUGR pregnancies. Na(+)-K(+)-ATPase activity provides an essential driving force for Na(+)-coupled system A transport, is decreased in the placenta of IUGR pregnancies, and is decreased by angiotensin II in several tissues. Several reports have shown activation of the fetoplacental renin-angiotensin system (RAS) in IUGR. We investigated the effect of angiotensin II on placental system A transport and Na(+)-K(+)-ATPase activity in placental villi. Placental system A activity in single primary villous fragments was measured as the Na(+)-dependent uptake of alpha-(methylamino)isobutyric acid, and Na(+)/K(+) ATPase activity was measured as ouabain-sensitive uptake of (86)rubidium. Angiotensin II decreased system A activity in a concentration-dependent fashion (10-500 nmol/l). Angiotensin II type 1 receptor (AT1-R) antagonists losartan and AT1-R anti-peptide blocked the angiotensin II effect, but the angiotensin II type 2 receptor antagonist PD-123319 was without effect. System A activity was not altered by preincubation with AT1-R-independent vasoconstrictors, and antioxidants did not prevent the decrease in activity mediated by angiotensin II. Angiotensin II decreased Na(+)-K(+)-ATPase activity by an AT1-R dependent mechanism, and inhibition of Na(+)-K(+)-ATPase activity decreased system A activity in a dose-response fashion. These data suggest that angiotensin II, via AT1-R signaling, decreases system A activity by suppressing Na(+)-K(+)-ATPase in human placental villi, consistent with possible adverse effects of enhanced placental RAS on fetal growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号