首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1954篇
  免费   189篇
  国内免费   1篇
  2023年   11篇
  2022年   32篇
  2021年   59篇
  2020年   25篇
  2019年   40篇
  2018年   50篇
  2017年   40篇
  2016年   64篇
  2015年   103篇
  2014年   127篇
  2013年   161篇
  2012年   201篇
  2011年   181篇
  2010年   110篇
  2009年   101篇
  2008年   122篇
  2007年   97篇
  2006年   92篇
  2005年   91篇
  2004年   73篇
  2003年   65篇
  2002年   59篇
  2001年   8篇
  2000年   7篇
  1999年   13篇
  1998年   15篇
  1997年   10篇
  1996年   5篇
  1994年   13篇
  1993年   5篇
  1991年   6篇
  1989年   5篇
  1987年   5篇
  1986年   5篇
  1984年   8篇
  1982年   5篇
  1980年   5篇
  1977年   4篇
  1974年   7篇
  1973年   5篇
  1972年   4篇
  1971年   4篇
  1970年   4篇
  1969年   12篇
  1968年   5篇
  1967年   5篇
  1965年   4篇
  1960年   6篇
  1958年   4篇
  1957年   4篇
排序方式: 共有2144条查询结果,搜索用时 15 毫秒
81.
Coccidia are obligate intracellular protozoan parasites responsible for human and veterinary diseases. Eimeria tenella, the aetiologic agent of caecal coccidiosis, is a major pathogen of chickens. In Toxoplasma gondii, some kinases from the rhoptry compartment (ROP) are key virulence factors. ROP kinases hijack and modulate many cellular functions and pathways, allowing T. gondii survival and development. E. tenella's kinome comprises 28 putative members of the ROP kinase family; most of them are predicted, as pseudokinases and their functions have never been characterised. One of the predicted kinase, EtROP1, was identified in the rhoptry proteome of E. tenella sporozoites. Here, we demonstrated that EtROP1 is active, and the N‐terminal extension is necessary for its catalytic kinase activity. Ectopic expression of EtROP1 followed by co‐immunoprecipitation identified cellular p53 as EtROP1 partner. Further characterisation confirmed the interaction and the phosphorylation of p53 by EtROP1. E. tenella infection or overexpression of EtROP1 resulted both in inhibition of host cell apoptosis and G0/G1 cell cycle arrest. This work functionally described the first ROP kinase from E. tenella and its noncanonical structure. Our study provides the first mechanistic insight into host cell apoptosis inhibition by E. tenella. EtROP1 appears as a new candidate for coccidiosis control.  相似文献   
82.
83.
84.
85.
Microarray technology was utilized to isolate disease-specific changes in gene expression by sampling across inferior parietal lobes of patients suffering from late onset AD or non-AD-associated dementia and non-demented controls. Primary focus was placed on understanding how inflammation plays a role in AD pathogenesis. Gene ontology analysis revealed that the most differentially expressed genes related to nervous system development and function and neurological disease followed by genes involved in inflammation and immunological signaling. Pathway analysis also implicated a role for chemokines and their receptors, specifically CXCR4 and CCR3, in AD. Immunohistological analysis revealed that these chemokine receptors are upregulated in AD patients. Western analysis demonstrated an increased activation of PKC, a downstream mediator of chemokine receptor signaling, in the majority of AD patients. A very specific cohort of genes related to amyloid beta accumulation and clearance were found to be significantly altered in AD. The most significantly downregulated gene in this data set was the endothelin converting enzyme 2 (ECE2), implicated in amyloid beta clearance. These data were subsequently confirmed by real-time PCR and Western blot analysis. Together, these findings open up new avenues of investigation and possible therapeutic strategies targeting inflammation and amyloid clearance in AD patients.  相似文献   
86.
Zeng X  Hourset A  Tzagoloff A 《Genetics》2007,175(1):55-63
Mutations in the Saccharomyces cerevisiae ATP22 gene were previously shown to block assembly of the F0 component of the mitochondrial proton-translocating ATPase. Further inquiries into the function of Atp22p have revealed that it is essential for translation of subunit 6 of the mitochondrial ATPase. The mutant phenotype can be partially rescued by the presence in the same cell of wild-type mitochondrial DNA and a rho- deletion genome in which the 5'-UTR, first exon, and first intron of COX1 are fused to the fourth codon of ATP6. The COX1/ATP6 gene is transcribed and processed to the mature mRNA by splicing of the COX1 intron from the precursor. The hybrid protein translated from the novel mRNA is proteolytically cleaved at the normal site between residues 10 and 11 of the subunit 6 precursor, causing the release of the polypeptide encoded by the COX1 exon. The ability of the rho- suppressor genome to express subunit 6 in an atp22 null mutant constitutes strong evidence that translation of subunit 6 depends on the interaction of Atp22p with the 5'-UTR of the ATP6 mRNA.  相似文献   
87.
Chang AS  Noor MA 《Genetics》2007,176(1):343-349
F(1) hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F(1) hybrid sterility.  相似文献   
88.
89.
90.

Interbasin water transfers are becoming an increasingly common tool to satisfy municipal and agricultural water demand, but their impacts on movement and gene flow of aquatic organisms are poorly understood. The Grand Ditch is an interbasin water transfer that diverts water from tributaries of the upper Colorado River on the west side of the Continental Divide to the upper Cache la Poudre River on the east side of the Continental Divide. We used single nucleotide polymorphisms to characterize population genetic structure in cutthroat trout (Oncorhynchus clarkii) and determine if fish utilize the Grand Ditch as a movement corridor. Samples were collected from two sites on the west side and three sites on the east side of the Continental Divide. We identified two or three genetic clusters, and relative migration rates and spatial distributions of admixed individuals indicated that the Grand Ditch facilitated bidirectional fish movement across the Continental Divide, a major biogeographic barrier. Previous studies have demonstrated ecological impacts of interbasin water transfers, but our study is one of the first to use genetics to understand how interbasin water transfers affect connectivity between previously isolated watersheds. We also discuss implications on native trout management and balancing water demand and biodiversity conservation.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号