首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3516篇
  免费   273篇
  国内免费   2篇
  2022年   44篇
  2021年   73篇
  2020年   33篇
  2019年   45篇
  2018年   60篇
  2017年   47篇
  2016年   82篇
  2015年   138篇
  2014年   166篇
  2013年   292篇
  2012年   262篇
  2011年   222篇
  2010年   139篇
  2009年   132篇
  2008年   175篇
  2007年   169篇
  2006年   156篇
  2005年   152篇
  2004年   133篇
  2003年   128篇
  2002年   110篇
  2001年   61篇
  2000年   82篇
  1999年   76篇
  1998年   33篇
  1997年   24篇
  1996年   20篇
  1995年   18篇
  1994年   22篇
  1993年   22篇
  1992年   46篇
  1991年   49篇
  1990年   45篇
  1989年   56篇
  1988年   40篇
  1987年   47篇
  1986年   26篇
  1985年   32篇
  1984年   19篇
  1983年   15篇
  1982年   25篇
  1981年   14篇
  1980年   13篇
  1979年   23篇
  1978年   17篇
  1977年   22篇
  1976年   17篇
  1975年   17篇
  1974年   15篇
  1969年   19篇
排序方式: 共有3791条查询结果,搜索用时 15 毫秒
121.
Journal of Physiology and Biochemistry - Thermogenic (brown and beige) adipose tissues improve glucose and lipid homeostasis and therefore represent putative targets to cure obesity and related...  相似文献   
122.
Fire is a crucial event regulating the structure and functioning of many ecosystems. Yet few studies have focused on how fire affects taxonomic and functional diversities of soil microbial communities, along with changes in plant communities and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects in a grassland ecosystem 9 months after an experimental fire at the Jasper Ridge Global Change Experiment site in California, USA. Fire altered soil microbial communities considerably, with community assembly process analysis showing that environmental selection pressure was higher in burned sites. However, a small subset of highly connected taxa was able to withstand the disturbance. In addition, fire decreased the relative abundances of most functional genes associated with C degradation and N cycling, implicating a slowdown of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated above‐ and belowground plant growth, likely enhancing plant–microbe competition for soil inorganic N, which was reduced by a factor of about 2. To synthesize those findings, we performed structural equation modeling, which showed that plants but not microbial communities were responsible for significantly higher soil respiration rates in burned sites. Together, our results demonstrate that fire ‘reboots’ the grassland ecosystem by differentially regulating plant and soil microbial communities, leading to significant changes in soil C and N dynamics.  相似文献   
123.
According to theories on cave adaptation, cave organisms are expected to develop a lower metabolic rate compared to surface organisms as an adaptation to food scarcity in the subterranean environments. To test this hypothesis, we compared the oxygen consumption rates of the surface and subterranean populations of a surface‐dwelling species, the newt Calotriton asper, occasionally found in caves. In this study, we designed a new experimental setup in which animals with free movement were monitored for several days in a respirometer. First, we measured the metabolic rates of individuals from the surface and subterranean populations, both maintained for eight years in captivity in a natural cave. We then tested individuals from these populations immediately after they were caught and one year later while being maintained in the cave. We found that the surface individuals that acclimated to the cave significantly reduced their oxygen consumption, whereas individuals from the subterranean population maintained in the cave under a light/dark cycle did not significantly modify their metabolic rates. Second, we compared these metabolic rates to those of an obligate subterranean salamander (Proteus anguinus), a surface aquatic Urodel (Ambystoma mexicanum), and a fish species (Gobio occitaniae) as references for surface organisms from different phyla. As predicted, we found differences between the subterranean and surface species, and the metabolic rates of surface and subterranean C. asper populations were between those of the obligate subterranean and surface species. These results suggest that the plasticity of the metabolism observed in surface C. asper was neither directly due to food availability in our experiments nor the light/dark conditions, but due to static temperatures. Moreover, we suggest that this adjustment of the metabolic level at a temperature close to the thermal optimum may further allow individual species to cope with the food limitations of the subterranean environment.  相似文献   
124.

Although branched-chain amino acids (BCAA) are commonly used as a strategy to recover nutritional status of critically ill patients, recent findings on their role as immunonutrients have been associated with unfavorable outcomes, especially in obese patients. The present study aimed to explore the effects of different BCAA supplementation protocols in the inflammatory response of LPS-stimulated RAW 264.7 macrophages. Cell cultures were divided into five groups, with and without BCAA supplementation, (2 mmol/L of each amino acid). Then, cell cultures followed three different treatment protocols, consisting of a pretreatment (PT), an acute treatment (AT), and a chronic treatment (CT) with BCAA and LPS stimulation (1 µg/mL). Cell viability was analyzed by MTT assay, NO production was assessed by the Griess reaction and IL-6, IL-10, TNF-α and PGE2 synthesis, was evaluated by ELISA. BCAA significantly increased cell viability in AT and CT protocols, and NO and IL-10 synthesis in all treatment protocols. IL-6 synthesis was only increased in PT and CT protocols. TNF-α and PGE2 synthesis were not altered in any of the protocols and groups. BCAA supplementation was able to increase both pro and anti-inflammatory mediators synthesis by RAW 264.7 macrophages, which was influenced by the protocol applied. Moreover, these parameters were significantly increased by isoleucine supplementation, highlighting a potential research field for future studies.

  相似文献   
125.
Non-human primates evaluate choices based on quantitative information and subjective valuation of options. Non-human primates can learn to value tokens as placeholders for primary rewards (such as food). With those tokens established as a potential form of ‘currency’, it is then possible to examine how they respond to opportunities to earn and use tokens in ways such as accumulating tokens or exchanging tokens with each other or with human experimenters to gain primary rewards. Sometimes, individuals make efficient and beneficial choices to obtain tokens and then exchange them at the right moments to gain optimal reward. Sometimes, they even accumulate such rewards through extended delay of gratification, or through other exchange-based interactions. Thus, non-human primates are capable of associating value to arbitrary tokens that may function as currency-like stimuli, but there also are strong limitations on how non-human primates can integrate such tokens into choice situations or use such tokens to fully ‘symbolize’ economic decision-making. These limitations are important to acknowledge when considering the evolutionary emergence of currency use in our species.This article is part of the theme issue ‘Existence and prevalence of economic behaviours among non-human primates’.  相似文献   
126.
It has recently been unveiled that a wide variety of microbial eukaryotes (protists) occur in chemosynthetic ecosystems, such as hydrothermal vents and methane seeps. However, there is little knowledge regarding protists associated with endemic animals inhabiting these environments. In the present study, utilizing PCR techniques, we detected fragments of the small subunit ribosomal RNA gene (SSU rRNA gene) from a particular protist from gill tissues of a significant fraction of the vesicomyid clams Calyptogena soyoae and C. okutanii complex and of the mussel Bathymodiolus platifrons and B. japonicus, all of which harbor chemosynthetic endosymbiont bacteria and dominate methane seeps in Sagami Bay, Japan. Based on the phylogeny of SSU rRNA gene, the organism in question was shown to belong to Alveolata. It is noteworthy that this protist did not affiliate with any known alveolate group, although being deeply branched within the lineage of Syndiniales, for which the monophyly was constantly recovered, but not robustly supported. In addition, the protist detected using PCR followed by sequencing was localized within gill epithelial cells of B. platifrons with whole‐mount fluorescence in situ hybridization. This protist may be an endoparasite or an endocommensal of Calyptogena spp. and Bathymodiolus spp., and possibly have physiological and ecological impacts on these bivalves.  相似文献   
127.
128.
Farmland biodiversity and its associated ecosystem services are affected by agricultural activities at multiple spatial scales. Among these services, the regulation of weeds by invertebrate seed predators has received much attention recently but little is known about the relative effect of local management and landscape context of fields on this process. We monitored seed predation on four common weed species and carabid communities in 28 winter-cereals fields during five consecutive weeks in spring 2010. These fields were situated in contrasted landscape contexts and varied in terms of intensity of pesticide treatments and soil tillage regimes. Weed seed predation was strongly and positively related to the Shannon diversity of (strictly) granivorous carabids and to the activity–density of omnivorous carabids but negatively to the richness of omnivorous carabids. Weed seed predation and granivore diversity were positively related to landscape diversity and the proportion cover of temporary grassland within a 1000 m radius around focal fields and were negatively affected by the intensity of local pesticide treatments. No-till systems sheltered higher diversity of granivorous carabids but did not show higher seed predation rates. We showed that landscape composition factors had a higher relative influence than local practices factors on weed seed predation service. Consequently, weed management strategies should not only consider the management of single fields but also the surrounding landscape to preserve carabid biodiversity and enhance weed seed predation service.  相似文献   
129.
To investigate mechanisms that underlie different modes of tumor cell movement we have studied how regulation of the activity of the Rho family GTPases determines the mode of tumor cell movement. Guanine nucleotide exchange factors (GEFs) and GTPase accelerating proteins (GAPs) are key regulators of the activity of small GTPases with GEFs promoting activation to the GTP bound state and GAPs promoting inactivation by stimulating GTP hydrolysis. We identified two important signaling pathways regulating amoeboid and mesenchymal types of motility in melanoma. Here, we discuss our findings in the context of how specificity of Rho signaling is achieved by GEFs and GAPs.  相似文献   
130.
Bordetella pertussis (B. pertussis) is the causative agent of whooping cough, which is a highly contagious disease in the human respiratory tract. Despite vaccination since the 1950s, pertussis remains the most prevalent vaccine-preventable disease in developed countries. A recent resurgence pertussis is associated with the expansion of B. pertussis strains with a novel allele for the pertussis toxin (ptx) promoter ptxP3 in place of resident ptxP1 strains. The recent expansion of ptxP3 strains suggests that these strains carry mutations that have increased their fitness. Compared to the ptxP1 strains, ptxP3 strains produce more Ptx, which results in increased virulence and immune suppression. In this study, we investigated the contribution of gene expression changes of various genes on the increased fitness of the ptxP3 strains. Using genome-wide gene expression profiling, we show that several virulence genes had higher expression levels in the ptxP3 strains compared to the ptxP1 strains. We provide the first evidence that wildtype ptxP3 strains are better colonizers in an intranasal mouse infection model. This study shows that the ptxP3 mutation and the genetic background of ptxP3 strains affect fitness by contributing to the ability to colonize in a mouse infection model. These results show that the genetic background of ptxP3 strains with a higher expression of virulence genes contribute to increased fitness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号