首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4227篇
  免费   581篇
  国内免费   3篇
  2022年   47篇
  2021年   76篇
  2019年   47篇
  2018年   68篇
  2017年   60篇
  2016年   81篇
  2015年   142篇
  2014年   189篇
  2013年   211篇
  2012年   285篇
  2011年   248篇
  2010年   166篇
  2009年   137篇
  2008年   203篇
  2007年   182篇
  2006年   148篇
  2005年   161篇
  2004年   144篇
  2003年   136篇
  2002年   131篇
  2001年   84篇
  2000年   69篇
  1999年   71篇
  1998年   51篇
  1997年   36篇
  1996年   42篇
  1992年   57篇
  1991年   82篇
  1990年   59篇
  1989年   74篇
  1988年   54篇
  1987年   58篇
  1986年   55篇
  1985年   57篇
  1984年   70篇
  1983年   44篇
  1982年   46篇
  1981年   37篇
  1980年   39篇
  1979年   61篇
  1978年   41篇
  1977年   58篇
  1976年   33篇
  1975年   45篇
  1974年   46篇
  1973年   51篇
  1972年   49篇
  1971年   34篇
  1970年   39篇
  1969年   41篇
排序方式: 共有4811条查询结果,搜索用时 617 毫秒
181.
R Levine  Y Koltin    J Kandel 《Nucleic acids research》1979,6(12):3717-3731
An in vitro nuclease activity was found to be associated with the purified killer proteins of Ustilago maydis. The proteins are effective against single stranded RNA, single and double stranded DNA. Endonucleolytic activity was confirmed by cleavage of circular molecules of 0x174 and PM2. Double stranded RNA did not appear to serve as a substrate.  相似文献   
182.
Summary Collagen synthesis in normal BHK 21/cl 13 and chemically transformed temperature-sensitive BHK 21/cl 13 cells (Me2N4) was assessed by examination of hydroxyproline formation and collagenase-susceptible protein. The Me2N4 cells lost their ability to synthesize collagen at both permissive and nonpermissive temperatures for transformation. These conclusions were confirmed by polyacrylamide-gel electrophoresis and CM-cellulose chromotography. Prolyl hydroxylase activity was present in both normal and transformed cells even when no collagen could be demonstrated. The production of noncollagen protein, although decreased in the transformed cell, did not change as drastically as the collagen synthesis. This paper was supported in part by a grant from the Public Health Service (AG00001), and by the Medical Research Service of the Veterans Administration.  相似文献   
183.
The fluorogenic reagent fluorescamine has been used to determine the labeling patterns of Type C spinach chloroplast membrane polypeptides. Membrane polypeptides labeled with fluorescamine were detected by scanning high resolution sodium dodecyl sulfate polyacrylamide gradient slab gels for fluorescence emission. Three membrane polypeptides show a decrease in the extent of labeling when chloroplast membranes are labeled in the light compared to when they are labeled in the dark. These polypeptides have apparent molecular weights 0f 32 000, 23 000 and 15 000. The decrease in labeling observed in the light is abolished or reduced by treatments which inactivate the light-generated transmembrane pH gradient. CF1-depleted chloroplasts show neither a light-activated pH gradient nor a light/dark difference in labeling of these three polypeptides. Both a light-activated pH gradient and light/dark difference in labeling are observed in CF1-depleted chloroplasts which have been treated with N,N'-dicyclohexylcarbodiimide. The same ammonium sulfate fractions of a 2% sodium cholate extract, which are believed to be enriched in the membrane-bound sector of the chloroplast ATPase (CFo) are also found to be enriched in the 32 000, 23 000 and 15 000 molecular weight polypeptides. The three polypeptides are believed to be components of CFo, and the light/dark labeling differences may indicate conformational changes within CFo. Such conformational changes may reflect a mechanism which couples light-generated proton gradients to ATP synthesis.  相似文献   
184.
Some of the kinetic properties of angiotensin-converting enzyme (peptidyl-dipeptide hydrolase, EC 3.4.15.1) purified from hog lung have been determined using hippurylglycylglycine as substrate. The effects of pH and ionic environment on enzyme activity are complex and interdependent. At 0.1 M NaCl, the pH-activity curve shows an abrupt decrease in V/Km as the pH rises from 6 to 6.5, implying that ionization of a group in the enzyme with a pK in this range aids in binding of the substrate. Chloride is required for enzyme activity; there are two phases in the effect of NaCl. At both pH 6 AND 8, THE FIRST PHASE (UP TO 0.1 M NaCl) is activation. The second phase (above 0.1 M) at pH 6 is inhibition, while at pH 8 there is further activation which appears to be dependent upon ionic strength rather than a specific Cl-effect. Activation by cobalt and inhibition by EDTA are somewhat more effective at pH 6 than at pH 8. The nonapeptide inhibitor less than Glu-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro is nearly equipotent at both pH 6 and 8, but Arg-Pro-Pro is more inhibitory at pH 8 than at pH 6.  相似文献   
185.
Adenosie, AMP, ADP and ATP activated adenylate cyclase in pig skin (epidermis) slices resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of the cyclic AMP-phophodiesterase inhibitor, papaverine. But another inhibitor, theophylline, strongly blocked the activation of adenylate cyclase by adenosine and adenine nucleotides. Theophylline apparently competed with adenosine for the cell suface receptor. Like theophylline, the addition of adenine alone caused no accumulation of cyclic AMP, but it significantly inhibited the stimulatory effect of adenosine. Guanosine, or guanine, cytidine, uridine, or thymidine nucleotides has no effect on the accumulation of cyclic AMP. Among other adenine nucleotides was tested, adenosine 5′-monophosphoramidate, but not adenosine 5′-monosulfate, significantly increased cyclic AMP especially with the addition of papaverine. Neither 2′- nor 3′-adenylic acid were effective. Our data indicate that pig epidermis has four specific and independent adenylate cyclase systems for adenosine (and adenine nucleotides), histamine, epinephrine and prostaglandin E.  相似文献   
186.
Prostaglandin E 9-ketoreductase was purified from chicken heart by ammonium sulfate fractionation, and DEAE-Sephadex, hydroxylapatite and phosphocellulose chromatography. Two peaks of activity were resolved during the phosphocellulose chromatographic step. Both peaks were stimulated by a substance that was not bound to the phosphocellulose column. This stimulatory substance was destroyed by treatment with phosphodiesterase and 0.1 M NaOH. It was heat-stable (100 degrees, 2 min), nondialyzable, and resistant to treatment with pronase, ribonuclease, and deoxyribonuclease; but it was dialyzable after heating or digestion with pronase. Sodium pyrophosphate also enhanced the activities of the prostaglandin E 9-ketoreductases as did angiotensin I; but not angiotensin II. In the presence of 3':5'-cyclic AMP, AMP, or several other ribonucleotides, the enhancing effects of the natural stimulatory substance, sodium pyrophosphate or angiotensin I were blocked, but these ribonucleotides themselves had little effect on the enzymes activity. The substrate specificities of the two prostaglandin E 9-ketoreductases were also studied. Both the 9-keto group and the 15-keto group of 15-ketoprostaglandin F2 alpha could be converted to the corresponding hydroxyl group; the 15-keto group was reduced faster than the 9-keto group. Prostaglandin D2, a prostaglandin with a 9-hydroxyl and an 11-keto group, could not be converted to prostaglandin F2 alpha nor could cyclohexanone be converted to cyclohexanol by the prostaglandin E 9-ketoreductase.  相似文献   
187.
Cytochalasin B (CB) was used to enucleate cells (cytoplasts) and to obtain karyoplasts (nuclei) from the human diploid fetal lung fibroblast strain WI-38. Fusion of cytoplasts and nuclei from young and old cells was accomplished with the aid of inactivated Sendai virus. Viable nuclei may be obtained from the karyoplast pellet after passage through a layer of bovine albumin which retains any contamination cytoplasts. The majority of successful fusions forming “whole cells” occurred when cytoplast from “old” cultures (PDL 40–51) and karyoplasts from “young” cultures were used (PDL 12–22), but almost always resulted in limited division of the viable reconstructed cells. When successful fusion occurred between “young” cytoplasts and “young” karyoplasts the number of cell divisions obtained was comparable to control cells kept under similar conditions.  相似文献   
188.
Guinea pig and bovine myelin basic proteins were chemically cleaved at the carboxyl peptide bonds of methionyl and tryptophanyl residues to yield several fragments. Comparison of the bovine fragment consisting of the first 20 residues of the protein with the corresponding guinea pig fragment showed that the latter differs in containing histidine and glycine (one residue of each), an additional threonyl residue, and one fewer alanyl residues. Comparison of the bovine fragment consisting of the C-terminal 54 residues of the protein (residues 117-170) with the corresponding guinea pig fragment showed that the latter differs in containing one fewer histidyl and leucyl residues and an additional phenylalanyl residue. Tests of encephalitogenic activity in Lewis rats showed that these two fragments from both species were much less active, on a molar basis, than the uncleaved protein. On the other hand, examination of the bovine fragments consisting of residues 1-116 and 21-116 and the corresponding fragments obtained from the guinea pig protein revealed activity at least as high as that of the respective uncleaved proteins.  相似文献   
189.
P16 is a virion protein and, as such, is incorporated into the phage head as a step in morphogenesis. The role of P16 in assembly is not essential since particles are formed without this protein which appear normal by electron microscopy. P16 is essential when the particle infects a cell in the following cycle of infection. In the absence of functional P16, the infection does not appear to proceed beyond release of phage DNA from the capsid. No known genes are expressed, no DNA is transcribed, and the host cell survives the infection, continuing to grow and divide normally. The P16 function is required only during infection for the expression of phage functions. Induction in the absence of P16 proceeds with the expression of early and late genes and results in particle formation. P16 must be incorporated during morphogenesis into progeny particles after both infection and induction for the progeny to be infectious. The P16 function is necessary for transduction as well as for infection. Its activity is independent of new protein synthesis and it is not under immunity control. P16 can act in trans, but appears to act preferentially on the phage or phage DNA with which it is packaged. The data from complementation studies are compatible with P16 release from the capsid with the phage DNA. In the absence of P16 the infection is blocked, but the phage genome is not degraded. The various roles which have been ruled out for P16 are: (i) an early regulatory function, (ii) an enzymatic activity necessary for phage production, (iii) protection of phage DNA from host degradation enzymes, (iv) any generalized alteration of the host cell, (v) binding parental DNA to the replication complex, and (vi) any direct involvement in the replication of P22 DNA. P16 can be responsible for: (i) complete release of the DNA and disengagement from the capsid, (ii) bringing the released DNA to some necessary cell site or compartment such as the cytoplasm, (iii) removal of other virion proteins from the injected DNA, and (iv) alterations of the structure of the injected DNA.  相似文献   
190.
Infection of African green monkey kidney cells with type 5 adenovirus leads to the synthesis of two infected, cell-specific proteins with approximate molecular weights of 72,000 and 48,000, that bind specifically to single-stranded but not double-stranded DNA. The production of these two proteins was studied after infection with two DNA-negative adenovirus mutants belonging to different complementation groups (H5 ts36 and H5 ts 125). Both DNA binding proteins were detected in cells infected with either mutant at the permissive temperature (32 C) AND ALSO IN H5 ts36-infected cells at the nonpermissive temperature (39.5 C). In H5 ts125-infected cells at 39.5 C, however, less than 5% of the normal wild-type level of these DNA binding proteins was detectable. When H5 ts125-infected cells were labeled with radioactive leucine at 32 C and subsequently shifted to 39.5 C in the presence of unlabeled leucine (chase), the level of DNA binding proteins found in these infected cells was markedly reduced compared to cultures not shifted to 39.5 C. These data suggest that the DNA binding proteins themselves were temperature sensitive. This conclusion was confirmed by experiments in which the DNA binding proteins were eluted from DNA cellulose with buffers of increasing temperatures (thermal elution). The H5 ts 125 proteins were shown to elute at lower temperatures than either wild-type or H5 ts36 proteins. These results are taken to indicate that the H5 ts125 mutant codes for a DNA binding protein that is thermolabile for continued binding to single-stranded DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号